scholarly journals Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
M M Muñoz ◽  
B L Bodensteiner

Abstract Understanding the motors and brakes that guide physiological evolution is a topic of keen interest, and is of increasing importance in light of global climate change. For more than half a century, Janzen’s hypothesis has been used to understand how climatic variability influences physiological divergence across elevation and latitude. At the same time, there has been increasing recognition that behavior and physiological evolution are mechanistically linked, with regulatory behaviors often serving to dampen environmental selection and stymie evolution (a phenomenon termed the Bogert effect). Here, we illustrate how some aspects of Janzen’s hypothesis and the Bogert effect can be connected to conceptually link climate, behavior, and rates of physiological evolution in a common framework. First, we demonstrate how thermal heterogeneity varies between nighttime and daytime environments across elevation in a tropical mountain. Using data from Hispaniolan Anolis lizards, we show how clinal variation in cold tolerance is consistent with thermally homogenous nighttime environments. Elevational patterns of heat tolerance and the preferred temperature, in contrast, are best explained by incorporating the buffering effects of thermoregulatory behavior in thermally heterogeneous daytime environments. In turn, climatic variation and behavior interact to determine rates of physiological evolution, with heat tolerance and the preferred temperature evolving much more slowly than cold tolerance. Conceptually bridging some aspects of Janzen’s hypothesis and the Bogert effect provides an integrative, cohesive framework illustrating how environment and behavior interact to shape patterns of physiological evolution.


2019 ◽  
Vol 374 (1778) ◽  
pp. 20190036 ◽  
Author(s):  
Jennifer Sunday ◽  
Joanne M. Bennett ◽  
Piero Calosi ◽  
Susana Clusella-Trullas ◽  
Sarah Gravel ◽  
...  

Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis . Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological ‘rules’. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.





2021 ◽  
Vol 14 (7) ◽  
pp. 32-41
Author(s):  
Netrananda Sahu ◽  
Martand Mani Mishra

It has become evident that the global climate is changing rapidly over the past few decades. The variation and change in the global climatic factors have a notable impact on the local climate of a region. The changing climate is widely regarded as one of the most serious global health threats of the 21st century. Among various kinds of diseases, the most vulnerable to these changes are vector-borne diseases. In the Indian context, particularly Delhi city is the most vulnerable to dengue, a kind of vector-borne disease having its highest impact. We sought to identify and explore the correlation and influence of the global climatic phenomena and local climatic factors with the reported number of dengue cases in Delhi. The temporal expansions of reported dengue cases in Delhi have a variation from its first major outbreak in the city during the year 1996 to 2015. A statistical tool like Pearson Product Moment Correlation (PPMC) is used in this study to establish the interrelationship and the level of impact and local climatic variation on dengue. An exceptional negative correlation value of r = -0.82 between the monsoon index and the dengue incidences was reported during the positive years and also maintains a very high positive correlation with other global climatic indices. The study here finds that there is a strong correlation of climatic variation which further influences the epidemiology of dengue in Delhi.



Author(s):  
Jiban Mani Poudel

In the 21st century, global climate change has become a public and political discourse. However, there is still a wide gap between global and local perspectives. The global perspective focuses on climate fluctuations that affect the larger region; and their analysis is based on long-term records over centuries and millennium. By comparison, local peoples’ perspectives vary locally, and local analyses are limited to a few days, years, decades and generations only. This paper examines how farmers in Kirtipur of Kathmandu Valley, Nepal, understand climate variability in their surroundings. The researcher has used a cognized model to understand farmers’ perception on weather fluctuations and climate change. The researcher has documented several eyewitness accounts of farmers about weather fluctuations which they have been observing in a lifetime. The researcher has also used rainfall data from 1970-2009 to test the accuracy of perceptions. Unlike meteorological analyses, farmers recall and their understanding of climatic variability by weather-crop interaction, and events associating with climatic fluctuations and perceptions are shaped by both physical visibility and cultural frame or belief system.DOI: http://dx.doi.org/10.3126/hn.v11i1.7200 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.30-34



Ecology ◽  
2021 ◽  
Author(s):  
Lily Leahy ◽  
Brett R. Scheffers ◽  
Stephen E. Williams ◽  
Alan N. Andersen


2020 ◽  
Vol 29 (9) ◽  
pp. 1486-1494 ◽  
Author(s):  
Jelena Bujan ◽  
Karl A. Roeder ◽  
Kirsten Beurs ◽  
Michael D. Weiser ◽  
Michael Kaspari


Author(s):  
Joseph P. Reser ◽  
Graham L. Bradley

There is a strong view among climate change researchers and communicators that the persuasive tactic of arousing fear in order to promote precautionary motivation and behavior is neither effective nor appropriate in the context of climate change communication and engagement. Yet the modest research evidence that exists with respect to the use of fear appeals in communicating climate change does not offer adequate empirical evidence—either for or against the efficacy of fear appeals in this context—nor would such evidence adequately address the issue of the appropriateness of fear appeals in climate change communication. Extensive research literatures addressing preparedness, prevention, and behavior change in the areas of public health, marketing, and risk communication generally nonetheless provide consistent empirical support for the qualified effectiveness of fear appeals in persuasive social influence communications and campaigns. It is also noteworthy that the language of climate change communication is typically that of “communication and engagement,” with little explicit reference to targeted social influence or behavior change, although this is clearly implied. Hence underlying and intertwined issues here are those of cogent arguments versus largely absent evidence, and effectiveness as distinct from appropriateness. These matters are enmeshed within the broader contours of the contested political, social, and environmental, issues status of climate change, which jostle for attention in a 24/7 media landscape of disturbing and frightening communications concerning the reality, nature, progression, and implications of global climate change. All of this is clearly a challenge for evaluation research attempting to examine the nature and effectiveness of fear appeals in the context of climate change communication, and for determining the appropriateness of designed fear appeals in climate change communications intended to both engage and influence individuals, communities, and “publics” with respect to the ongoing threat and risks of climate change. There is an urgent need to clearly and effectively communicate the full nature and implications of climate change, in the face of this profound risk and rapidly unfolding reality. All such communications are, inherently, frightening warning messages, quite apart from any intentional fear appeals. How then should we put these arguments, evidence, and challenges “on the table” in our considerations and recommendations for enhancing climate change communication—and addressing the daunting and existential implications of climate change?



Planta ◽  
1983 ◽  
Vol 159 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Suzan E. Hetherington ◽  
Robert M. Smillie ◽  
P. Malagamba ◽  
Z. Huam�n


2000 ◽  
Vol 19 (1-5) ◽  
pp. 227-241 ◽  
Author(s):  
Elsa Cortijo ◽  
Laurent Labeyrie ◽  
Mary Elliot ◽  
Estelle Balbon ◽  
Nadine Tisnerat


2019 ◽  
Author(s):  
Ryan A. Martin ◽  
Lacy D. Chick ◽  
Aaron R. Yilmaz ◽  
Sarah E. Diamond

AbstractDisentangling the mechanisms of phenotypic shifts in response to environmental change is critical, and although studies increasingly disentangle phenotypic plasticity from evolutionary change, few explore the potential role for transgenerational plasticity in this context. Here, we evaluate the potential role that transgenerational plasticity plays in phenotypic divergence of acorn ants in response to urbanization. F2 generation worker ants (offspring of lab-born queens) exhibited similar divergence among urban and rural populations as F1 generation worker ants (offspring of field-born queens) indicating that evolutionary differentiation rather than transgenerational plasticity was responsible for shifts towards higher heat tolerance and diminished cold tolerance in urban acorn ants. Hybrid matings between urban and rural populations provided further insight into the genetic architecture of thermal adaptation. Heat tolerance of hybrids more resembled the urban-urban pure type, whereas cold tolerance of hybrids more resembled the rural-rural pure type. As a consequence, thermal tolerance traits in this system appear to be influenced by dominance rather than being purely additive traits, and heat and cold tolerance might be determined by separate genes. Though transgenerational plasticity does not explain divergence of acorn ant thermal tolerance, its role in divergence of other traits and across other urbanization gradients merits further study.



Sign in / Sign up

Export Citation Format

Share Document