Arctic Security, Territory, Population: Canadian Sovereignty and the International

2019 ◽  
Vol 13 (4) ◽  
pp. 358-374
Author(s):  
Mark B Salter

Abstract Canada's policies to assert and maintain sovereignty over the High Arctic illuminate both the analytical leverage and blind spots of Foucault's influential Security, Territory, Population (2007) schema for understanding modern governmentality. Governmental logics of security, sovereignty, and biopolitics are contemporaneous and concomitant. The Arctic case demonstrates clearly that the Canadian state messily uses whatever governmental tools are in its grasp to manage the Inuit and claim territorial sovereignty over the High North. But, the case of Canadian High Arctic policies also illustrates the limitations of Foucault's schema. First, the Security, Territory, Population framework has no theorization of the international. In this article I show the simultaneous implementation of Canadian security-, territorial-, and population-oriented policies over the High Arctic. Next, I present the international catalysts that prompt and condition these polices and their specifically settler-colonial tenor. Finally, in line with the Foucauldian imperative to support the “resurrection of subjugated knowledges” (Foucault 2003, 7), I conclude by offering some of the Inuit ways of resisting and reshaping these policies, proving how the Inuit shaped Canadian Arctic sovereignty as much as Canadian Arctic sovereignty policies shaped the Inuit.

2010 ◽  
Vol 10 (2) ◽  
pp. 2221-2244 ◽  
Author(s):  
L. Huang ◽  
S. L. Gong ◽  
S. Sharma ◽  
D. Lavoué ◽  
C. Q. Jia

Abstract. Black carbon (BC) particles accumulated in the Arctic troposphere and deposited over snow have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, transport pathways affecting Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work, along with the associated transport frequency. Based on the atmospheric transport frequency and the estimated BC emission intensity from surrounding regions, a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measured at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively). Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that Eurasia is the major contributor to the near-surface BC levels at the Canadian High Arctic site with an average contribution of over 85% during the 16-year period. In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more predominant with a multi-year average of 94%. The model estimates smaller contribution from the Eurasian sector in spring (70%) than that in winter. It is also found that the change in Eurasian contributions depends mainly on the reduction of emission intensity, while the changes in both emission and atmospheric transport contributed to the inter-annual variation of North American contributions.


1989 ◽  
Vol 12 ◽  
pp. 152-156 ◽  
Author(s):  
W.M. Sackinger ◽  
M.O. Jeffries ◽  
H. Tippens ◽  
F. Li ◽  
M. Lu

The largest ice island presently known to exist in the Arctic Ocean has a mass of about 700 × 106 tonnes, an area of about 26 km2, and a mean thickness of 42.5 m. Known as Hobson’s Ice Island, this large ice feature has been tracked almost continuously since August 1983 with a succession of Argos buoys. In this paper, two particular ice-island movement episodes near the north-west coast of Axel Heiberg Island are described: 6–16 May 1986 and 14–21 June 1986. Each movement episode is analyzed in terms of the forces acting on the ice island, including wind shear, water drag, water shear, Coriolis force, sea-surface tilt, and pack-ice force. Ice-island movement is generally preceded by an offshore surface wind, and a threshold wind speed of 6 m s°1 appears to be necessary to initiate ice-island motion. An angle of 50° between surface wind and ice-island movement direction is noted during one episode. The pack-ice force, which appears to be the dominant arresting factor of ice-island motion for these two episodes, varies from 100° to 180° to the left of the ice-island velocity direction, depending upon whether the ice island is accelerating or decelerating.


2007 ◽  
Vol 20 (18) ◽  
pp. 4586-4598 ◽  
Author(s):  
Alex S. Gardner ◽  
Martin Sharp

Abstract Variability in July mean surface air temperatures from 1963 to 2003 accounted for 62% of the variance in the regional annual glacier mass balance signal for the Canadian High Arctic. A regime shift to more negative regional glacier mass balance occurred between 1986 and 1987, and is linked to a coincident shift from lower to higher mean July air temperatures. Both the interannual changes and the regime shifts in regional glacier mass balance and July air temperatures are related to variations in the position and strength of the July circumpolar vortex. In years when the July vortex is “strong” and its center is located in the Western Hemisphere, positive mass balance anomalies prevail. In contrast, highly negative mass balance anomalies occur when the July circumpolar vortex is either weak or strong without elongation over the Canadian High Arctic, and its center is located in the Eastern Hemisphere. The occurrence of westerly positioned July vortices has decreased by 40% since 1987. The associated shift to a dominantly easterly positioned July vortex was associated with an increased frequency of tropospheric ridging over the Canadian High Arctic, higher surface air temperatures, and more negative regional glacier mass balance.


2001 ◽  
Vol 66 (3) ◽  
pp. 453-470 ◽  
Author(s):  
Peter C. Dawson

The semisubterranean whale-bone house is one of the most recognizable aspects of Thule Inuit culture. Following their arrival in the Canadian Arctic approximately 1,000 years ago, Thule peoples built these impressive and often enigmatic dwellings for occupation during the long winter months. Variability in the architectural properties of semisubterranean house forms has traditionally been used by archaeologists to infer cultural and historical relationships between regions, and establish seasonal and/or functional distinctions in usage. An analysis of 31 semisubterranean houses from two Thule winter village sites in the Canadian High Arctic using multivariate statistics and computer-aided drafting reveals a range of architectural variability that may represent attempts by Thule builders to accommodate 1) fluctuations in the availability of key building materials, 2) differences in household mobility, or 3) whaling-related social differentiation between households. These results have important implications for understanding the relationships among house form, environment, and culture in Thule Inuit society.


Botany ◽  
2009 ◽  
Vol 87 (5) ◽  
pp. 443-454 ◽  
Author(s):  
Dermot Antoniades ◽  
Marianne S.V. Douglas ◽  
John P. Smol

Streams are amongst the most sensitive ecosystems in Arctic regions to environmental change. Although diatoms are excellent indicators of environmental change, little information is available about stream diatom distributions across the vast Canadian High Arctic. We sampled 42 streams from nine islands in the Canadian Arctic Archipelago to study their diatom floras and evaluate the influences of biogeographic and environmental variables on species distributions. Highly divergent diatom communities were identified, with 100% species overturn between the most dissimilar communities. Taxa including Hannaea arcus (Ehrenberg) Patrick were characteristic of streams from all regions; other common taxa included Nitzschia perminuta (Grunow) Peragallo, Rossithidium petersenii (Hustedt) Round & Bukhtiyarova, Achnanthidium minutissimum (Kützing) Czarnecki, and Eucocconeis laevis (Østrup) H. Lange-Bertalot. Canonical correspondence analysis indicated that diatom assemblages were significantly related to differences in pH, temperature, latitude, and longitude, which together explained 14.7% of species variability. Analysis of similarities indicated that communities did not differ significantly between epilithic and epiphytic samples and that there were weak but significant differences between the diatom communities in our three regions. These data provide important baseline information for future biomonitoring efforts as well as for paleolimnological studies of past stream hydrology.


2010 ◽  
Vol 10 (21) ◽  
pp. 10489-10502 ◽  
Author(s):  
T. Kuhn ◽  
R. Damoah ◽  
A. Bacak ◽  
J. J. Sloan

Abstract. We report the analysis of measurements made using an aerosol mass spectrometer (AMS; Aerodyne Research Inc.) that was installed in the Polar Environment Atmospheric Research Laboratory (PEARL) in summer 2006. PEARL is located in the Canadian high Arctic at 610 m above sea level on Ellesmere Island (80° N 86° W). PEARL is unique for its remote location in the Arctic and because most of the time it is situated within the free troposphere. It is, therefore, well suited as a receptor site to study the long-range tropospheric transport of pollutants into the Arctic. Some information about the successful year-round operation of an AMS at a high Arctic site such as PEARL will be reported here, together with design considerations for reliable sampling under harsh low-temperature conditions. Computational fluid dynamics calculations were made to ensure that sample integrity was maintained while sampling air at temperatures that average −40 °C in the winter and can be as low as −55 °C. Selected AMS measurements of aerosol mass concentration, size and chemical composition recorded during the months of August, September and October 2006 will be reported. The air temperature was raised to about 20 °C during sampling, but the short residence time in the inlet system (~25 s) ensured that less than 10% of semivolatiles such as ammonium nitrate were lost. During this period, sulfate was, at most times, the predominant aerosol component with on average 0.115 μg m−3 (detection limit 0.003 μg m−3). The second most abundant component was undifferentiated organic aerosol, with on average 0.11 μg m−3 (detection limit 0.04 μg m−3). The nitrate component, which averaged 0.007 μg m−3, was above its detection limit (0.002 μg m−3), whereas the ammonium ion had an apparent average concentration of 0.02 μg m−3, which was approximately equal to its detection limit. A few episodes, having increased mass concentrations and lasting from several hours to several days, are apparent in the data. These were investigated further using a statistical analysis to determine their common characteristics. High correlations among some of the components arriving during the short-term episodes provide evidence for common sources. Lagrangian methods were also used to identify the source regions for some of the episodes. In all cases, these coincided with the arrival of air that had contacted the surface at latitudes below about 60° N. Most of these lower-latitude footprints were on land, but sulfate emissions from shipping in the Atlantic were also detected. The Lagrangian results demonstrate that there is direct transport of polluted air into the high Arctic (up to 80° N) from latitudes down to 40° N on a time scale of 2–3 weeks. The polluted air originates in a wide variety of industrial, resource extraction and petroleum-related activity as well as from large population centres.


2021 ◽  
Author(s):  
Florent Domine ◽  
Georg Lackner ◽  
Denis Sarrazin ◽  
Mathilde Poirier ◽  
Maria Belke-Brea

Abstract. Seasonal snow covers Arctic lands 6 to 10 months of the year and is therefore an essential element of the Arctic geosphere and biosphere. Yet, even the most sophisticated snow physics models are not able to simulate fundamental physical properties of Arctic snowpacks such as density, thermal conductivity and specific surface area. The development of improved snow models is in progress but testing requires detailed driving and validation data for high Arctic herb tundra sites, which are presently not available. We present 6 years of such data for an ice-wedge polygonal site in the Canadian high Arctic, in Qarlikturvik valley on Bylot Island at 73.15 °N. The site is on herb tundra with no erect vegetation and thick permafrost. Detailed soil properties are provided. Driving data are comprised of air temperature, air relative and specific humidity, wind speed, short wave and long wave downwelling radiation, atmospheric pressure and precipitation. Validation data include time series of snow depth, shortwave upwelling radiation, surface temperature, snow temperature profiles, soil temperature and water content profiles at five depths, snow thermal conductivity at three heights and soil thermal conductivity at 10 cm depth. Field campaigns in mid-May for 5 of the 6 years of interest provided spatially-averaged snow depths and vertical profiles of snow density and specific surface area in the polygon of interest and at other spots in the valley. Data are available at https://doi.org/10.5885/45693CE-02685A5200DD4C38 (Domine et al., 2021). Data files will be updated as more years of data become available.


2018 ◽  
Vol 18 (15) ◽  
pp. 11345-11361 ◽  
Author(s):  
John K. Kodros ◽  
Sarah J. Hanna ◽  
Allan K. Bertram ◽  
W. Richard Leaitch ◽  
Hannes Schulz ◽  
...  

Abstract. Transport of anthropogenic aerosol into the Arctic in the spring months has the potential to affect regional climate; however, modeling estimates of the aerosol direct radiative effect (DRE) are sensitive to uncertainties in the mixing state of black carbon (BC). A common approach in previous modeling studies is to assume an entirely external mixture (all primarily scattering species are in separate particles from BC) or internal mixture (all primarily scattering species are mixed in the same particles as BC). To provide constraints on the size-resolved mixing state of BC, we use airborne single-particle soot photometer (SP2) and ultrahigh-sensitivity aerosol spectrometer (UHSAS) measurements from the Alfred Wegener Institute (AWI) Polar 6 flights from the NETCARE/PAMARCMIP2015 campaign to estimate coating thickness as a function of refractory BC (rBC) core diameter and the fraction of particles containing rBC in the springtime Canadian high Arctic. For rBC core diameters in the range of 140 to 220 nm, we find average coating thicknesses of approximately 45 to 40 nm, respectively, resulting in ratios of total particle diameter to rBC core diameters ranging from 1.6 to 1.4. For total particle diameters ranging from 175 to 730 nm, rBC-containing particle number fractions range from 16 % to 3 %, respectively. We combine the observed mixing-state constraints with simulated size-resolved aerosol mass and number distributions from GEOS-Chem–TOMAS to estimate the DRE with observed bounds on mixing state as opposed to assuming an entirely external or internal mixture. We find that the pan-Arctic average springtime DRE ranges from −1.65 to −1.34 W m−2 when assuming entirely externally or internally mixed BC. This range in DRE is reduced by over a factor of 2 (−1.59 to −1.45 W m−2) when using the observed mixing-state constraints. The difference in DRE between the two observed mixing-state constraints is due to an underestimation of BC mass fraction in the springtime Arctic in GEOS-Chem–TOMAS compared to Polar 6 observations. Measurements of mixing state provide important constraints for model estimates of DRE.


Sign in / Sign up

Export Citation Format

Share Document