scholarly journals Oxidative and nitrosative stresses in cerebral malaria: can we target them to avoid a bad prognosis?

Author(s):  
Domingos Magno Santos Pereira ◽  
Alexsander Rodrigues Carvalho Júnior ◽  
Eliza Maria da Costa Brito Lacerda ◽  
Luis Cláudio Nascimento da Silva ◽  
Cláudio Romero Farias Marinho ◽  
...  

Abstract There is currently a global effort to reduce malaria morbidity and mortality. However, malaria still results in the deaths of thousands of people every year. Malaria is caused by Plasmodium spp., parasites transmitted through the bite of an infected female Anopheles mosquito. Treatment timing plays a decisive role in reducing mortality and sequelae associated with the severe forms of the disease such as cerebral malaria (CM). The available antimalarial therapy is considered effective but parasite resistance to these drugs has been observed in some countries. Antimalarial drugs act by increasing parasite lysis, especially through targeting oxidative stress pathways. Here we discuss the roles of reactive oxygen species and reactive nitrogen intermediates in CM as a result of host–parasite interactions. We also present evidence of the potential contribution of oxidative and nitrosative stress-based antimalarial drugs to disease treatment and control.


2020 ◽  
Author(s):  
Mossad Ahmad Saif ◽  
Hamdan Ibrahim Al-Mohammad

Abstract Background Macrophages, within which Leishmania sp. replicate, generate large amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS) to kill these parasites. Methods The aim of the present study was to assess oxidative, nitrosative stresses, and some immune enzymes in blood of cutaneous leishmaniasis (CL) patients before and after treatment as well as in control individuals. Serum activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidas (GSH-Px) and the levels of reduced glutathione, malondialdehyde (MAD) and nitric oxide (NO) as well as L-arginase, myeloperoxidase (MPO), adenosine deaminase (ADA) have been studied. Results The activities of the L-arginase, MPO and ADA, the levels of MDA and NO are significantly elevated (P < 0.001), while that of SOD, CAT, and GSH-Px, and GSH level were significantly (P < 0.001) reduced in untreated patients compared with the corresponding activities of the treated and control individuals. The treatment ameliorated these agents in comparison to the untreated group but there was still variations between the values of treated and control groups. Conclusion These results suggested that oxidative and nitrusative stress may play an important role in the pathogenesis of untreated cutaneous leishmaniasis



2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Aderville Cabassi ◽  
Simone Maurizio Binno ◽  
Stefano Tedeschi ◽  
Gallia Graiani ◽  
Cinzia Galizia ◽  
...  

Rationale. Heart failure (HF) is accompanied by the development of an imbalance between oxygen- and nitric oxide-derived free radical production leading to protein nitration. Both chlorinating and peroxidase cycle of Myeloperoxidase (MPO) contribute to oxidative and nitrosative stress and are involved in tyrosine nitration of protein. Ceruloplasmin (Cp) has antioxidant function through its ferroxidase I (FeOxI) activity and has recently been proposed as a physiological defense mechanism against MPO inappropriate actions.Objective. We investigated the relationship between plasma MPO-related chlorinating activity, Cp and FeOxI, and nitrosative stress, inflammatory, neurohormonal, and nutritional biomarkers in HF patients.Methods and Results. In chronic HF patients (n=81, 76±9 years, NYHA Class II (26); Class III (29); Class IV (26)) and age-matched controls (n=17, 75±11 years, CTR), plasma MPO chlorinating activity, Cp, FeOxI, nitrated protein, free Malondialdehyde, BNP, norepinephrine, hsCRP, albumin, and prealbumin were measured. Plasma MPO chlorinating activity, Cp, BNP, norepinephrine, and hsCRP were increased in HF versus CTR. FeOxI, albumin, and prealbumin were decreased in HF. MPO-related chlorinating activity was positively related to Cp (r= 0.363,P<0.001), nitrated protein, hsCRP, and BNP and inversely to albumin.Conclusions. Plasma MPO chlorinated activity is increased in elderly chronic HF patients and positively associated with Cp, inflammatory, neurohormonal, and nitrosative parameters suggesting a role in HF progression.





Author(s):  
Marietta Zita Poles ◽  
László Juhász ◽  
Mihály Boros

AbstractMammalian methanogenesis is regarded as an indicator of carbohydrate fermentation by anaerobic gastrointestinal flora. Once generated by microbes or released by a non-bacterial process, methane is generally considered to be biologically inactive. However, recent studies have provided evidence for methane bioactivity in various in vivo settings. The administration of methane either in gas form or solutions has been shown to have anti-inflammatory and neuroprotective effects in an array of experimental conditions, such as ischemia/reperfusion, endotoxemia and sepsis. It has also been demonstrated that exogenous methane influences the key regulatory mechanisms and cellular signalling pathways involved in oxidative and nitrosative stress responses. This review offers an insight into the latest findings on the multi-faceted organ protective activity of exogenous methane treatments with special emphasis on its versatile effects demonstrated in sepsis models.



Oxygen ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 3-15
Author(s):  
John T. Hancock

Control of cellular function is extremely complex, being reliant on a wide range of components. Several of these are small oxygen-based molecules. Although reactive compounds containing oxygen are usually harmful to cells when accumulated to relatively high concentrations, they are also instrumental in the control of the activity of a myriad of proteins, and control both the upregulation and downregulation of gene expression. The formation of one oxygen-based molecule, such as the superoxide anion, can lead to a cascade of downstream generation of others, such as hydrogen peroxide (H2O2) and the hydroxyl radical (∙OH), each with their own reactivity and effect. Nitrogen-based signaling molecules also contain oxygen, and include nitric oxide (NO) and peroxynitrite, both instrumental among the suite of cell signaling components. These molecules do not act alone, but form part of a complex interplay of reactions, including with several sulfur-based compounds, such as glutathione and hydrogen sulfide (H2S). Overaccumulation of oxygen-based reactive compounds may alter the redox status of the cell and lead to programmed cell death, in processes referred to as oxidative stress, or nitrosative stress (for nitrogen-based molecules). Here, an overview of the main oxygen-based molecules involved, and the ramifications of their production, is given.



2012 ◽  
Vol 17 (9) ◽  
pp. 1201-1214 ◽  
Author(s):  
Andrés Vázquez-Torres


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52850 ◽  
Author(s):  
Pedro Miramón ◽  
Christine Dunker ◽  
Hanna Windecker ◽  
Iryna M. Bohovych ◽  
Alistair J. P. Brown ◽  
...  




2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Alexander Franz ◽  
Laura Joseph ◽  
Constantin Mayer ◽  
Jan-Frieder Harmsen ◽  
Holger Schrumpf ◽  
...  

Osteoarthritis (OA) is the most frequently diagnosed joint disorder worldwide with increasing prevalence and crucial impact on the quality of life of affected patients through chronic pain, decreasing mobility and invalidity. Although some risk factors, such as age, obesity and previous joint injury are well established, the exact pathogenesis of OA on a cellular and molecular level remains less understood. Today, the role of nitrosative and oxidative stress has not been investigated conclusively in the pathogenesis of OA yet. Therefore, the objective of this study was to identify biological substances for oxidative and nitrosative stress, which mirror the degenerative processes in an osteoarthritic joint. 69 patients suffering from a diagnosed knee pain participated in this study. Based on the orthopedic diagnosis, patients were classified into an osteoarthritis group (OAG, n=24) or in one of two control groups (meniscopathy, CG1, n=11; anterior cruciate ligament rupture, CG2, n=34). Independently from the study protocol, all patients underwent an invasive surgical intervention which was used to collect samples from the synovial membrane, synovial fluid and human serum. Synovial biopsies were analyzed histopathologically for synovitis (Krenn-Score) and immunohistochemically for detection of end products of oxidative (8-isoprostane F2α) and nitrosative (3-nitrotyrosine) stress. Additionally, the fluid samples were analyzed for 8-isoprostane F2α and 3-nitrotyrosine by competitive ELISA method. The analyzation of inflammation in synovial biopsies revealed a slight synovitis in all three investigated groups. Detectable concentrations of 3-nitrotyrosine were reported in all three investigated groups without showing any significant differences between the synovial biopsies, fluid or human serum. In contrast, significant increased concentrations of 8-isoprostane F2α were detected in OAG compared to both control groups. Furthermore, our data showed a significant correlation between the histopathological synovitis and oxidative stress in OAG (r=0.728, P<0.01). There were no significant differences between the concentrations of 8-isoprostane F2α in synovial fluid and human serum. The findings of the current study support the hypothesis that oxidative and nitrosative stress are components of the multi-factory pathophysiological formation of OA. It seems reasonable that an inflammatory process in the synovial membrane triggers the generation of oxidative and nitrosative acting substances which can lead to a further degradation of the articular cartilage. Based on correlations between the observed degree of inflammation and investigated biomarkers, especially 8-isoprostane F2α seems to be a novel candidate biomarker for OA. However, due to the finding that also both control groups showed increased concentrations of selected biomarkers, future studies have to validate the diagnostic potential of these biomarkers in OA and in related conditions of the knee joint.



Sign in / Sign up

Export Citation Format

Share Document