Screening of OXA-244 producers, a difficult-to-detect and emerging OXA-48 variant?

Author(s):  
Cecile Emeraud ◽  
Laura Biez ◽  
Delphine Girlich ◽  
Agnès B Jousset ◽  
Thierry Naas ◽  
...  

Abstract Background OXA-244, a single amino acid variant of OXA-48, demonstrates weaker hydrolytic activity towards carbapenems and temocillin compared with OXA-48. Of note, these antimicrobials are present in high concentrations in several carbapenemase-producing Enterobacterales (CPE) screening media. As a result, some screening media fail to grow OXA-244-producing isolates, while the prevalence of OXA-244 producers is constantly increasing in France. Methods Here, we evaluate the performance of three commercially available CPE screening media [ChromID® CARBA SMART (bioMérieux), Brilliance™ CRE (Thermo Fisher) and mSuperCARBA™ (MAST Diagnostic)] for their ability to detect OXA-244 producers (n = 101). As OXA-244 producers may also express an ESBL, two additional ESBL screening media were tested (Brilliance™ ESBL and ChromID® BLSE). MICs of temocillin and imipenem were determined by broth microdilution. The clonality of OXA-244-producing Escherichia coli isolates (n = 97) was assessed by MLST. Results Overall, the sensitivity of the ChromID® CARBA SMART, Brilliance™ CRE and mSuperCARBA™ media were 14% (95% CI = 8.1%–22.5%), 54% (95% CI = 43.3%–63.4%) and 99% (95% CI = 93.8%–100%), respectively, for the detection of OXA-244 producers. Among the 101 OXA-244-producing isolates, 96% were E. coli and 77%–78% grew on ESBL screening media. MLST analysis identified five main STs among OXA-244-producing E. coli isolates: ST38 (n = 37), ST361 (n = 17), ST69 (n = 12), ST167 (n = 11) and ST10 (n = 8). Conclusions Our results demonstrated that the mSuperCARBA™ medium is very efficient in the detection of OXA-244 producers, unlike the ChromID® CARBA SMART medium. The high prevalence of ESBLs among OXA-244 producers allowed detection of 77%–78% of them using ESBL-specific screening media.

Author(s):  
Akito Kawai ◽  
Masahiro Suzuki ◽  
Kentaro Tsukamoto ◽  
Yusuke Minato ◽  
Yohei Doi

Post-translational methylation of the A site of 16S rRNA at position A1408 leads to pan-aminoglycoside resistance encompassing both 4,5- and 4,6-disubstituted 2-deoxystreptamine (DOS) aminoglycosides. To date, NpmA is the only acquired enzyme with such function. Here, we present function and structure of NpmB1 whose sequence was identified in Escherichia coli genomes registered from the United Kingdom. NpmB1 possesses 40% amino acid identity with NpmA1 and confers resistance to all clinically relevant aminoglycosides including 4,5-DOS agents. Phylogenetic analysis of NpmB1 and NpmB2, its single amino acid variant, revealed that the encoding gene was likely acquired by E. coli from a soil bacterium. The structure of NpmB1 suggests that it requires a structural change of the β6/7 linker in order to bind to 16S rRNA. These findings establish NpmB1 and NpmB2 as the second group of acquired pan-aminoglycoside resistance 16S rRNA methyltransferases.


2000 ◽  
Vol 182 (9) ◽  
pp. 2567-2573 ◽  
Author(s):  
Nobuo Kido ◽  
Hidemitsu Kobayashi

ABSTRACT wbdA is a mannosyltransferase gene that is involved in synthesis of the Escherichia coli O9a polysaccharide, a mannose homopolymer with a repeating unit of 2-αMan-1,2-αMan-1,3-αMan-1,3-αMan-1. The equivalent structural O polysaccharide in the E. coli O9 andKlebsiella O3 strains is 2-αMan-1,2-αMan-1,2-αMan-1,3-αMan-1,3-αMan-1, with an excess of one mannose in the 1,2 linkage. We have cloned wbdAgenes from these O9 and O3 strains and shown by genetic and functional studies that wbdA is the only gene determining the O-polysaccharide structure of O9 or O9a. Based on functional analysis of chimeric genes and site-directed mutagenesis, we showed that a single amino acid substitution, C55R, in WbdA of E. coli O9 converts the O9 polysaccharide into O9a. DNA sequencing revealed the substitution to be conserved in other E. coli O9a strains. The reverse substitution, R55C, in WbdA of E. coli O9a resulted in lipopolysaccharide synthesis showing no ladder profile instead of the conversion of O9a to O9. This suggests that more than one amino acid substitution in WbdA is required for conversion from O9a to O9.


2012 ◽  
Vol 56 (4) ◽  
pp. 2184-2186 ◽  
Author(s):  
Patrice Nordmann ◽  
Anne E. Boulanger ◽  
Laurent Poirel

ABSTRACTA clinicalEscherichia coliisolate resistant to all β-lactams, including carbapenems, expressed a novel metallo-β-lactamase (MBL), NDM-4, differing from NDM-1 by a single amino acid substitution (Met154Leu). NDM-4 possessed increased hydrolytic activity toward carbapenems and several cephalosporins compared to that of NDM-1. This amino acid substitution was not located in the known active sites of NDM-1, indicating that remote amino acid substitutions might also play a role in the extended activity of this MBL.


2002 ◽  
Vol 70 (5) ◽  
pp. 2264-2270 ◽  
Author(s):  
Corinna Moormann ◽  
Inga Benz ◽  
M. Alexander Schmidt

ABSTRACT The plasmid-encoded AIDA (adhesin involved in diffuse adherence) autotransporter protein derived from diffuse-adhering clinical Escherichia coli isolate 2787 and the TibA (enterotoxigenic invasion locus B) protein encoded by the chromosomal tib locus of enterotoxigenic E. coli (ETEC) strain H10407 are posttranslationally modified by carbohydrate substituents. Analysis of the AIDA-I adhesin showed that the modification involved heptose residues. AIDA-I is modified by the heptosyltransferase activity of the product of the aah gene, which is located directly upstream of adhesin-encoding gene aidA. The carbohydrate modification of the TibA adhesin/invasin is mediated by the TibC protein but has not been elucidated. Based on the sequence similarities between TibC and AAH (autotransporter adhesin heptosyltransferase) and between the TibA and the AIDA proteins we hypothesized that the AIDA system and the Tib system encoded by the tib locus are structurally and functionally related. Here we show that (i) TibC proteins derived from different ETEC strains appear to be highly conserved, (ii) recombinant TibC proteins can substitute for the AAH heptosyltransferase in introducing the heptosyl modification to AIDA-I, (iii) this modification is functional in restoring the adhesive function of AIDA-I, (iv) a single amino acid substitution at position 358 completely abolishes this activity, and (v) antibodies directed at the functionally active AIDA-I recognize a protein resembling modified TibA in ETEC strains. In summary, we conclude that, like AAH, TibC represents an example of a novel class of heptosyltransferases specifically transferring heptose residues onto multiple sites of a protein backbone. A potential consensus sequence for the modification site is suggested.


1997 ◽  
Vol 41 (6) ◽  
pp. 1322-1325 ◽  
Author(s):  
D Sirot ◽  
C Recule ◽  
E B Chaibi ◽  
L Bret ◽  
J Croize ◽  
...  

Escherichia coli GR102 was isolated from feces of a leukemic patient. It expressed different levels of resistance to amoxicillin or ticarcillin plus clavulanate and to the various cephalosporins tested. The double-disk synergy test was weakly positive. Production of a beta-lactamase with a pI of 5.6 was transferred to E. coli HB101 by conjugation. The nucleotide sequence was determined by direct sequencing of the amplification products obtained by PCR performed with TEM gene primers. This enzyme differed from TEM-1 (blaT-1B gene) by four amino acid substitutions: Met-->Leu-69, Glu-->Lys-104, Gly-->Ser-238 and Asn-->Asp-276. The amino acid susbstitutions Leu-69 and Asp-276 are known to be responsible for inhibitor resistance of the IRT-4 mutant, as are Lys-104 and Ser-238 substitutions for hydrolytic activity of the extended-spectrum beta-lactamases TEM-15, TEM-4, and TEM-3. These combined mutations led to a mutant enzyme which conferred a level of resistance to coamoxiclav (MIC, 64 microg/ml) much lower than that conferred by IRT-4 (MIC, 2,048 microg/ml) but higher than that conferred by TEM-15 or TEM-1 (MIC, 16 microg/ml). In addition, the MIC of ceftazidime for E. coli transconjugant GR202 (1 microg/ml) was lower than that for E. coli TEM-15 (16 microg/ml) and higher than that for E. coli IRT-4 or TEM-1 (0.06 microg/ml). The MICs observed for this TEM-type enzyme were related to the kinetic constants Km and k(cat) and the 50% inhibitory concentration, which were intermediate between those observed for IRT-4 and TEM-15. In conclusion, this new type of complex mutant derived from TEM-1 (CMT-1) is able to confer resistance at a very low level to inhibitors and at a low level to extended-spectrum cephalosporins. CMT-1 received the designation TEM-50.


2009 ◽  
Vol 58 (6) ◽  
pp. 811-815 ◽  
Author(s):  
Jun Yin ◽  
Jun Cheng ◽  
Zhen Sun ◽  
Ying Ye ◽  
Yu-Feng Gao ◽  
...  

Three clinical strains of Escherichia coli (p168, p517 and p667) were collected in 2006 from three hospitals in Anhui Province (China). PCR and DNA sequencing revealed that E. coli p168 carried a novel extended-spectrum β-lactamase (ESBL), which was designated CTX-M-87. The extended-spectrum β-lactamase which was carried by E. coli p517 and E. coli p667 was previously named CTX-M-65. The deduced amino acid sequence of CTX-M-87, with pI 9.1, differed from that of CTX-M-14 by the substitutions Ala77→Val and Pro167→Leu. Like CTX-M-14, CTX-M-87 had a more potent hydrolytic activity against cefotaxime than against ceftazidime and had high affinity for cefuroxime and cefotaxime. These data show that mutations at position 167 in CTX-M do not always affect catalytic activity and substrate preference.


2020 ◽  
Author(s):  
Fengyang Li ◽  
Heike Bähre ◽  
Manfred Rohde ◽  
Ute Römling

AbstractIn rod-shaped bacteria morphological plasticity occurs in response to stress, which blocks cell division to promote filamentation. We demonstrate here that overexpression of the patatin-like phospholipase variant CapVQ329R but not CapV causes pronounced sulA-independent pyridoxine-inhibited cell filamentation and restriction of swimming and flagella production of Escherichia coli K-12 derivative MG1655. Mutational analyses of CapVQ329R indicated conserved amino acids in canonical patatin-like phospholipase A motifs, but not the nucleophilic serine to be required for the observed phenotypes. Furthermore, CapVQ329R alters rdar biofilm formation including expression of the biofilm activator CsgD. Moreover, commensal and pathogenic E. coli strains and Salmonella typhimurium also responded with cell filamentation and alteration in biofilm formation. In conclusion, this work identifies the CapV variant CapVQ329R as a pleiotropic regulator, emphasizes a scaffold function for patatin-like phospholipases and highlights the role of a single amino acid change for the evolution of protein functionality.


2006 ◽  
Vol 50 (2) ◽  
pp. 534-541 ◽  
Author(s):  
Jun-ichi Wachino ◽  
Hiroshi Kurokawa ◽  
Satowa Suzuki ◽  
Kunikazu Yamane ◽  
Naohiro Shibata ◽  
...  

ABSTRACT Nine Escherichia coli and 5 Klebsiella pneumoniae clinical isolates resistant to various cephalosporins and cephamycins were identified in a Japanese general hospital between 1995 and 1997. All nine E. coli isolates and one K. pneumoniae isolate carried bla CMY-9, while the other four K. pneumoniae isolates harbored a variant of bla CMY-9, namely, bla CMY-19. The pulsed-field gel electrophoresis patterns of the nine CMY-9-producing E. coli isolates were almost identical, suggesting their clonal relatedness, while those of the five K. pneumoniae isolates were divergent. Plasmid profiles, Southern hybridization, and conjugation assays revealed that the genes for the CMY-9 and the CMY-19 β-lactamases were located on very similar conjugative plasmids in E. coli and K. pneumoniae. The genetic environment of bla CMY-19 was identical to that of bla CMY-9. A single amino acid substitution, I292S, adjacent to the H-10 helix region was observed between CMY-9 and CMY-19. This substitution was suggested to be responsible for the expansion of the hydrolyzing activity against several broad-spectrum cephalosporins, and this finding was consistent with the kinetic parameters determined with purified enzymes. These findings suggest that the bla CMY-19 genes found in the four K. pneumoniae isolates might have originated from bla CMY-9 gene following a point mutation and dispersed among genetically different K. pneumoniae isolates via a large transferable plasmid.


2005 ◽  
Vol 388 (3) ◽  
pp. 879-887 ◽  
Author(s):  
Daniela K. JACQUELÍN ◽  
Adrián FILIBERTI ◽  
Carlos E. ARGARAÑA ◽  
José L. BARRA

Escherichia coli MutS, MutL and MutH proteins act sequentially in the MMRS (mismatch repair system). MutH directs the repair system to the newly synthesized strand due to its transient lack of Dam (DNA-adenine methylase) methylation. Although Pseudomonas aeruginosa does not have the corresponding E. coli MutH and Dam homologues, and consequently the MMRS seems to work differently, we show that the mutL gene from P. aeruginosa is capable of complementing a MutL-deficient strain of E. coli. MutL from P. aeruginosa has conserved 21 out of the 22 amino acids known to affect functioning of E. coli MutL. We showed, using protein affinity chromatography, that the C-terminal regions of P. aeruginosa and E. coli MutL are capable of specifically interacting with E. coli MutH and retaining the E. coli MutH. Although, the amino acid sequences of the C-terminal regions of these two proteins are only 18% identical, they are 88% identical in the predicted secondary structure. Finally, by analysing (E. coli–P. aeruginosa) chimaeric MutL proteins, we show that the N-terminal regions of E. coli and P. aeruginosa MutL proteins function similarly, in vivo and in vitro. These new findings support the hypothesis that a large surface, rather than a single amino acid, constitutes the MutL surface for interaction with MutH, and that the N- and C-terminal regions of MutL are involved in such interactions.


2021 ◽  
Vol 22 (11) ◽  
pp. 5905
Author(s):  
Olivia M. Grünzweil ◽  
Lauren Palmer ◽  
Adriana Cabal ◽  
Michael P. Szostak ◽  
Werner Ruppitsch ◽  
...  

Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.


Sign in / Sign up

Export Citation Format

Share Document