scholarly journals Targeting cell signalling pathways to fight the flu: towards a paradigm change in anti-influenza therapy

2009 ◽  
Vol 64 (1) ◽  
pp. 1-4 ◽  
Author(s):  
S. Ludwig
Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 522 ◽  
Author(s):  
Gabriele Riva ◽  
Chiara Cilibrasi ◽  
Riccardo Bazzoni ◽  
Massimiliano Cadamuro ◽  
Caterina Negroni ◽  
...  

Glioblastoma is the most common malignant brain tumour in adults. The failure of current therapies can be ascribed to glioma stem cells (GSCs), which can rapidly repopulate the tumour following the initial treatment. The study of histone deacetylase inhibitors, such as valproic acid (VPA), is becoming an attractive field in cancer research. However, the exact mechanisms underlying its anti-cancer effect remain to be elucidated due to its pleiotropic effects on several cell-signalling pathways. Ingenuity Pathway Analysis (IPA) bioinformatics analysis was performed on genome-wide data regarding GSCs methylome to identify the signalling pathways mainly affected by methylation changes induced by VPA. Real time PCR and luciferase reporter assay were used to better investigate VPA effects on Wnt/β-catenin signalling pathway. VPA effect on GSC proliferation was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and Trypan blue assays. Finally, VPA impact on GSC motility was demonstrated by Boyden chamber assay and further confirmed evaluating the expression levels or localisation, through western blot or immunofluorescence, of Twist1, Snail1, E-Cadherin and N-Cadherin. The bioinformatics analyses performed on GSCs methylome highlighted that Wnt/β-catenin signalling was affected by the methylation changes induced by VPA, which could influence its activation status. In particular, we pointed out a general activation of this pathway after VPA exposure, which was accompanied by an inhibitory potential on GSCs proliferation. Finally, we also proved VPA’s ability to inhibit GSCs invasion through Snail1 and Twist1 downregulation and E-Cadherin relocalisation. VPA treatment may represent a new, interesting therapeutic approach to affect GSC proliferation and motility, but further investigations are certainly needed.


Author(s):  
Paulina Dziamałek-Macioszczyk ◽  
Joanna Haraźna ◽  
Tomasz Stompór

Ubiquitin-specific peptidase 18 (USP18) is a multifunctional protein and its roles are still being investigated. This enzyme removes ubiquitin-like molecules from their substrates and the only known interferon-stimulated gene 15 (ISG15) specific protease. Apart from its enzymatic function, it also inhibits interferon type I and III signalling pathways. USP18 is known to regulate multiple processes, such as: cell cycle, cell signalling and response to viral and bacterial infections. Moreover, it contributes to the development of several autoimmune diseases and carcinogenesis, and recently was described as a cardiac remodelling inhibitor. This review summarizes the current knowledge on USP18 functions, highlighting its contribution to the development of heart failure, given the fact that this disease’s etiology is now considered to be inflammatory in nature.


Parasitology ◽  
2005 ◽  
Vol 130 (S1) ◽  
pp. S27-S35 ◽  
Author(s):  
D. J. GREGORY ◽  
M. OLIVIER

The protozoaLeishmaniaspp. are obligate intracellular parasites that inhabit the macrophages of their host. Since macrophages are specialized for the identification and destruction of invading pathogens, both directly and by triggering an innate immune response,Leishmaniahave evolved a number of mechanisms for suppressing some critical macrophage activities. In this review, we discuss how various species ofLeishmaniadistort the host macrophage's own signalling pathways to repress the expression of various cytokines and microbicidal molecules (nitric oxide and reactive oxygen species), and antigen presentation. In particular, we describe how MAP Kinase and JAK/STAT cascades are repressed, and intracellular Ca2+and the activities of protein tyrosine phosphatases, in particular SHP-1, are elevated.


2009 ◽  
Vol 10 (Suppl 8) ◽  
pp. S6 ◽  
Author(s):  
Anna Bauer-Mehren ◽  
Laura I Furlong ◽  
Michael Rautschka ◽  
Ferran Sanz

2017 ◽  
Vol 1 (6) ◽  
pp. 633-639 ◽  
Author(s):  
Pengfei Cai ◽  
Donald P. McManus ◽  
Hong You

Over the last decade, there has been accumulating evidence showing that signalling pathways are involved in extensive biological and physiological processes in the human blood fluke schistosomes, playing essential roles in environmental sensing, host penetration, growth, development, maturation, embryogenesis, tissue self-renewal and survival. Owing to the likelihood of resistance developing against praziquantel, the only drug currently available that is effective against all the human schistosome species, there is an urgent requirement for an alternative treatment, arguing for continuing research into novel or repurposed anti-schistosomal drugs. An increasing number of anticancer drugs are being developed which block abnormal signalling pathways, a feature that has stimulated interest in developing novel interventions against human schistosomiasis by targeting key cell signalling components. In this review, we discuss the functional characterization of signal transduction pathways in schistosomes and consider current challenges and future perspectives in this important area of research.


2013 ◽  
Vol 41 (5) ◽  
pp. 1195-1200 ◽  
Author(s):  
Baojun Wang ◽  
Mauricio Barahona ◽  
Martin Buck ◽  
Jörg Schumacher

Bacterial cells continuously sense and respond to their environment using their inherent signalling and gene regulatory networks. Cells are equipped with parallel signalling pathways, which can specifically cope with individual input signals, while interconnectivities between pathways lead to an enhanced complexity of regulatory responses that enable sophisticated adaptation. In principle, any cell signalling pathway may be rewired to respond to non-cognate signals by exchanging and recombining their underlying cognate signalling components. In the present article, we review the engineering strategies and use of chimaeric regulatory proteins in cell signalling pathways, especially the TCS (two-component signalling) system in bacteria, to achieve novel customized signalling or regulatory functions. We envisage that engineered chimaeric regulatory proteins can play an important role to aid both forward and reverse engineering of biological systems for many desired applications.


2006 ◽  
Vol 96 (S1) ◽  
pp. S31-S33 ◽  
Author(s):  
Mari-Carmen Gomez-Cabrera ◽  
Agustín Martínez ◽  
Gustavo Santangelo ◽  
Federico V. Pallardó ◽  
Juan Sastre ◽  
...  

We have recently reported that xanthine oxidase is involved in the generation of free radicals in exhaustive exercise. Allopurinol, an inhibitor of xanthine oxidase, prevents it. The aim of the present work was to elucidate the role of exercise-derived reactive oxygen species in the cell signalling pathways involved in the adaptation to exercise in man. We have found that exercise causes an increase in the activity of plasma xanthine oxidase and an activation of NF-κB in peripheral blood lymphocytes after marathon running. This activation is dependent on free radical formation in exercise: treatment with allopurinol completely prevents it. In animal models, we previously showed that NF-κB activation induced by exhaustive physical exercise leads to an increase in the expression of superoxide dismutase, an enzyme involved in antioxidant defence. We report evidence in man that reactive oxygen species act as signals in exercise as decreasing their formation prevents activation of important signalling pathways which can cause useful adaptations in cells.


2008 ◽  
Vol 94 (1) ◽  
pp. 130-137 ◽  
Author(s):  
Derek Daniels ◽  
Elizabeth G. Mietlicki ◽  
Erica L. Nowak ◽  
Steven J. Fluharty

Sign in / Sign up

Export Citation Format

Share Document