scholarly journals Fosfomycin resistance inAcinetobacter baumanniiis mediated by efflux through a major facilitator superfamily (MFS) transporter—AbaF

2016 ◽  
Vol 72 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Atin Sharma ◽  
Rajnikant Sharma ◽  
Tapas Bhattacharyya ◽  
Timsy Bhando ◽  
Ranjana Pathania
2019 ◽  
Vol 5 (4) ◽  
pp. 100 ◽  
Author(s):  
Marta de Ramón-Carbonell ◽  
Mario López-Pérez ◽  
Luis González-Candelas ◽  
Paloma Sánchez-Torres

A new Penicillium digitatum major facilitator superfamily (MFS) transporter (PdMFS1) was identified and functionally characterized in order to shed more light on the mechanisms underlying fungicide resistance. PdMFS1 can play an important role in the intensification of resistance to fungicides normally used in P. digitatum postharvest treatments. In the PdMFS1 disrupted mutants, a slight effect in response to chemical fungicides was observed, but fungicide sensitivity was highly affected in the overexpression mutants which became resistant to wide range of chemical fungicides. Moreover, P. digitatum knock-out mutants exhibited a lower rate of fungal virulence when infected oranges were stored at 20 °C. Disease symptoms were higher in the PdMFS1 overexpression mutants coming from the low-virulent P. digitatum parental strain. In addition, the gene expression analysis showed an induction of PdMFS1 transcription in all overexpression mutants regardless from which progenitor came from, and four-time intensification of the parental wild type strain during citrus infection reinforcing PdMFS1 role in fungal virulence. The P. digitatum MFS transporter PdMFS1 contributes not only to the acquisition of wide range of fungicide resistance but also in fungal virulence during citrus infection.


2019 ◽  
Vol 8 (16) ◽  
Author(s):  
Qiuying Cheng ◽  
Gary Xie ◽  
Hajnalka Daligault ◽  
Karen Davenport ◽  
Cheryl Gleasner ◽  
...  

We report here the genome sequence of a Staphylococcus xylosus clinical isolate, strain SMA0341-04 (UGA5), which contains one chromosome and at least one plasmid. Notably, strain SMA0341-04 (UGA5) contains the tetracycline efflux major facilitator superfamily (MFS) transporter (tetK) gene.


2019 ◽  
Vol 8 (15) ◽  
Author(s):  
Gary Xie ◽  
Qiuying Cheng ◽  
Hajnalka Daligault ◽  
Karen Davenport ◽  
Cheryl Gleasner ◽  
...  

We report the complete draft genome sequences of two Staphylococcus warneri clinical isolates, strains SMA0023-04 (UGA3) and SMA0670-05 (UGA28), each of which contains one chromosome and at least one plasmid. Isolate SMA0023-04 (UGA3) contains tetracycline efflux major facilitator superfamily (MFS) transporter (tetK), macrolide resistance (msrC and mphC), and beta-lactamase (blaZ) genes on its plasmids.


Author(s):  
Elisa Rampacci ◽  
Maria Luisa Marenzoni ◽  
Rolando Cannalire ◽  
Donatella Pietrella ◽  
Stefano Sabatini ◽  
...  

Abstract Background This study introduces a newly created strain (Rhodococcus equiEtBr25) by exposing R. equi ATCC 33701 to ethidium bromide (EtBr), a substrate for MDR transporters. Such an approach allowed us to investigate the resulting phenotype and genetic mechanisms underlying the efflux-mediated resistance in R. equi. Methods R. equi ATCC 33701 was stimulated with increasing concentrations of EtBr. The antimicrobial susceptibility of the parental strain and R. equiEtBr25 was investigated in the presence/absence of efflux pump inhibitors (EPIs). EtBr efflux was evaluated by EtBr-agar method and flow cytometry. The presence of efflux pump genes was determined by conventional PCR before to quantify the expression of 30 genes coding for membrane transporters by qPCR. The presence of erm(46) and mutations in 23S rRNA, and gyrA/gyrB was assessed by PCR and DNA sequencing to exclude the occurrence of resistance mechanisms other than efflux. Results R. equi EtBr25 showed an increased EtBr efflux. Against this strain, the activity of EtBr, azithromycin and ciprofloxacin was more affected than that of rifampicin and azithromycin/rifampicin combinations. Resistances were reversed by combining the antimicrobials with EPIs. Gene expression analysis detected a marked up-regulation of REQ_RS13460 encoding for a Major Facilitator Superfamily (MFS) transporter. G→A transition occurred in the transcriptional repressor tetR/acrR adjacent to REQ_RS13460. Conclusions Exposure of R. equi to EtBr unmasked an efflux-mediated defence against azithromycin and ciprofloxacin, which seemingly correlates with the overexpression of a specific MFS transporter. This genotype may mirror an insidious low-level resistance of clinically important isolates that could be countered by EPI-based therapies.


2018 ◽  
Vol 84 (20) ◽  
Author(s):  
Kosuke Mori ◽  
Koh Niinuma ◽  
Masaya Fujita ◽  
Naofumi Kamimura ◽  
Eiji Masai

ABSTRACTThe microbial conversion of lignin-derived aromatics is a promising strategy for the industrial utilization of this large biomass resource. However, efficient application requires an elucidation of the relevant transport and catabolic pathways. InSphingobiumsp. strain SYK-6, most of the enzyme genes involved in 5,5′-dehydrodivanillate (DDVA) catabolism have been characterized, but the transporter has not yet been identified. Here, we identified SLG_07710 (ddvK) and SLG_07780 (ddvR), genes encoding a putative major facilitator superfamily (MFS) transporter and MarR-type transcriptional regulator, respectively. AddvKmutant of SYK-6 completely lost the capacity to grow on and convert DDVA. DdvR repressed the expression of the DDVAO-demethylase oxygenase component gene (ligXa), while DDVA acted as the gene inducer. A DDVA uptake assay was developed by employing this DdvR-controlledligXatranscriptional regulatory system. ASphingobium japonicumUT26S transformant expressingddvKacquired DDVA uptake capacity, indicating thatddvKencodes the DDVA transporter. DdvK, probably requiring the proton motive force, was suggested to be a novel MFS transporter on the basis of the amino acid sequence similarity. Subsequently, we evaluated the effects ofddvKoverexpression on the production of the DDVA metabolite 2-pyrone-4,6-dicarboxylate (PDC), a building block of functional polymers. A SYK-6 mutant of the PDC hydrolase gene (ligI) cultured in DDVA accumulated PDC via 5-carboxyvanillate and grew by utilizing 4-carboxy-2-hydroxypenta-2,4-dienoate. The introduction of addvK-expression plasmid into aligImutant increased the growth rate in DDVA and the amounts of DDVA converted and PDC produced after 48 h by 1.35- and 1.34-fold, respectively. These results indicate that enhanced transporter gene expression can improve metabolite production from lignin derivatives.IMPORTANCEThe bioengineering of bacteria to selectively transport and metabolize natural substrates into specific metabolites is a valuable strategy for industrial-scale chemical production. The uptake of many substrates into cells requires specific transport systems, and so the identification and characterization of transporter genes are essential for industrial applications. A number of bacterial major facilitator superfamily transporters of aromatic acids have been identified and characterized, but many transporters of lignin-derived aromatic acids remain unidentified. The efficient conversion of lignin, an abundant but unutilized aromatic biomass resource, to value-added metabolites using microbial catabolism requires the characterization of transporters for lignin-derived aromatics. In this study, we identified the transporter gene responsible for the uptake of 5,5′-dehydrodivanillate, a lignin-derived biphenyl compound, inSphingobiumsp. strain SYK-6. In addition to characterizing its function, we applied this transporter gene to the production of a value-added metabolite from 5,5′-dehydrodivanillate.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 476
Author(s):  
Joachim Kloehn ◽  
Matteo Lunghi ◽  
Emmanuel Varesio ◽  
David Dubois ◽  
Dominique Soldati-Favre

Apicomplexan parasites are responsible for devastating diseases, including malaria, toxoplasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of toxoplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been characterized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- and proteome-wide datasets, we have identified an essential plasma membrane transporter of the major facilitator superfamily in T. gondii—previously termed TgApiAT6-1. Using an inducible system based on RNA degradation, TgApiAT6-1 was depleted, and the mutant parasite’s metabolome was compared to that of non-depleted parasites. The most significantly reduced metabolite in parasites depleted in TgApiAT6-1 was identified as the amino acid lysine, for which T. gondii is predicted to be auxotrophic. Using stable isotope-labeled amino acids, we confirmed that TgApiAT6-1 is required for efficient lysine uptake. Our findings highlight untargeted metabolomics as a powerful tool to identify the substrate of orphan transporters.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sushant Kumar ◽  
Arunabh Athreya ◽  
Ashutosh Gulati ◽  
Rahul Mony Nair ◽  
Ithayaraja Mahendran ◽  
...  

AbstractTransporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.


2021 ◽  
Vol 7 (2) ◽  
pp. 138
Author(s):  
Min Liang ◽  
Wei Li ◽  
Landa Qi ◽  
Guocan Chen ◽  
Lei Cai ◽  
...  

Fungi from unique environments exhibit special physiological characters and plenty of bioactive natural products. However, the recalcitrant genetics or poor transformation efficiencies prevent scientists from systematically studying molecular biological mechanisms and exploiting their metabolites. In this study, we targeted a guanophilic fungus Amphichorda guana LC5815 and developed a genetic transformation system. We firstly established an efficient protoplast preparing method by conditional optimization of sporulation and protoplast regeneration. The regeneration rate of the protoplast is up to about 34.6% with 0.8 M sucrose as the osmotic pressure stabilizer. To develop the genetic transformation, we used the polyethylene glycol-mediated protoplast transformation, and the testing gene AG04914 encoding a major facilitator superfamily transporter was deleted in strain LC5815, which proves the feasibility of this genetic manipulation system. Furthermore, a uridine/uracil auxotrophic strain was created by using a positive screening protocol with 5-fluoroorotic acid as a selective reagent. Finally, the genetic transformation system was successfully established in the guanophilic fungus strain LC5815, which lays the foundation for the molecular genetics research and will facilitate the exploitation of bioactive secondary metabolites in fungi.


Sign in / Sign up

Export Citation Format

Share Document