Fatty Acid Composition of Olive Oil by Urea Fractionation and Gas-Liquid Chromatography

1965 ◽  
Vol 48 (6) ◽  
pp. 1191-1202
Author(s):  
J L Iverson ◽  
J Eisner ◽  
D Firestone

Abstract The fatty acid composition of California and imported (France, Greece, Italy, Spain, and Tunisia) olive oils is reported. The entire series of fatty acids of odd and even chain lengths from C12 to C28 is present as well as the even chain length monounsaturates from C16 to C22. Branched (iso and/or anteiso) C18 and C22 to C30 acids were tentatively identified in certain olive oils. Tunisian olive oil is characteristically high in palmitic acid (17%) and low in oleic acid (57%) compared with the levels of palmitic acid (12%) and oleic acid (72%) in the other olive oils.

2020 ◽  
Vol 11 ◽  
pp. e3247
Author(s):  
Mounsif Charaf-eddine BENDI DJELLOUL ◽  
Sidi Mohamed Amrani ◽  
Pierangela Rovellini ◽  
Roza Chenoune

Olive represents the most widespread fruit cultivated in Algeria. Olive oil is the primary source of added fat in the Mediterranean diet with health benefits of which have been verified for millennia. Interest in phenolic compounds in olive oil has increased due to its antioxidant activity, which plays a very important role in human health. The present study is carried out to study the phenolic compounds and fatty acids profile of some olive oils from western Algeria. The quality parameters (acidity, peroxide value, K232, K270), tocopherol analysis, fatty acid composition and phenolic profile were determined by High performance chromatography (HPLC). The results showed that chemlal oil (SBA) recorded the highest level of tocopherol-α with 228.12 mg/Kg. Regarding the fatty acid composition, oleic acid was the most dominant, oil Oleaster (Bensekrane) records the highest percentage (72.80%) of oleic acid. The quantitative data on the phenolic content of the seven samples revealed that chemlal oil (SBA) had the highest level of polyphenols (328.99 mg/Kg). However, Sigoise oil (Sebra1) was characterized by the highest levels of tyrosol and hydroxytyrosol (15.89 mg/kg and 22.42 mg/kg, respectively). The highest concentrations of oleuropein derivatives and ligstroside derivatives were observed in chemlal oil (SBA) and the recoreded values were 105.97 mg/Kg and 83.49 mg/Kg, respectively. Chemlal oil (SBA) was characterized by the highest amount of lignans (35.93 mg/Kg), luteolin (10.16 mg/Kg) and apigenin (5.44 mg/Kg). Oleocanthal was found in all the tested samples and it was higher in Chemlal oil (102.43 mg/kg).


1970 ◽  
Vol 42 (4) ◽  
pp. 455-464 ◽  
Author(s):  
Md Moshfekus Saleh-E-In ◽  
Sudhangshu Kumar Roy

Anethum sowa L. (Dill) seeds were investigated to determine the fatty acid composition and proximate analyses. The seeds contain 9.36 % fatty oil. The saturated and unsaturated fatty acids contributed 6.22% and 93.78% respectively of the oil. The per cent composition of the extracted oil was identified by Gas Liquid Chromatography (GLC). Among the six fatty acids identified from this study oleic acid contributed the highest proportion (87.10%), where as, linolenic, palmitic, stearic, behenic and arachidic all together contributed the rest (12.90%). Proximate analyses showed that A. sowa. seeds are good source of dietary fibre. Overall Dill seeds oil can be considered as a good source of oleic acid. Key words: Anethum sowa, dill seed oil, fatty acid composition, oleic acid, linolenic acid, Gas liquid chromatography. Bangladesh J. Sci. Ind. Res. 42(4), 455-464, 2007


1967 ◽  
Vol 24 (5) ◽  
pp. 1101-1115 ◽  
Author(s):  
R. W. Lewis

The fatty acid composition of 20 species of marine animals, primarily fishes and crustaceans, was determined by gas–liquid chromatography. The species came from various depths down to 4400 m. The results showed that the medium-chain saturated and the long-chain polyunsaturated acids decreased with increasing depth, while oleic acid increased. It was thought that this indicated the presence of large amounts of wax esters. A benthic, mud-feeding holothurian Scoloplanes theeli was shown to have a fatty acid composition markedly different from that of pelagic species. This was attributed in part to the bacterial components of its diet.


2014 ◽  
Vol 139 (4) ◽  
pp. 433-441 ◽  
Author(s):  
Geoffrey Meru ◽  
Cecilia McGregor

Seed oil percentage (SOP) and fatty acid composition of watermelon (Citrullus lanatus) seeds are important traits in Africa, the Middle East, and Asia where the seeds provide a significant source of nutrition and income. Oil yield from watermelon seed exceeds 50% (w/w) and is high in unsaturated fatty acids, a profile comparable to that of sunflower (Helianthus annuus) and soybean (Glycine max) oil. As a result of novel non-food uses of plant-derived oils, there is an increasing need for more sources of vegetable oil. To improve the nutritive value of watermelon seed and position watermelon as a potential oil crop, it is critical to understand the genetic factors associated with SOP and fatty acid composition. Although the fatty acid composition of watermelon seed is well documented, the underlying genetic basis has not yet been studied. Therefore, the current study aimed to elucidate the quality of watermelon seed oil and identify genomic regions and candidate genes associated with fatty acid composition. Seed from an F2 population developed from a cross between an egusi type (PI 560023), known for its high SOP, and Strain II (PI 279261) was phenotyped for palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). Significant (P < 0.05) correlations were found between palmitic and oleic acid (0.24), palmitic and linoleic acid (–0.37), stearic and linoleic acid (–0.21), and oleic and linoleic acid (–0.92). A total of eight quantitative trait loci (QTL) were associated with fatty acid composition with a QTL for oleic and linoleic acid colocalizing on chromosome (Chr) 6. Eighty genes involved in fatty biosynthesis including those modulating the ratio of saturated and unsaturated fatty acids were identified from the functionally annotated genes on the watermelon draft genome. Several fatty acid biosynthesis genes were found within and in close proximity to the QTL identified in this study. A gene (Cla013264) homolog to fatty acid elongase (FAE) was found within the 1.5-likelihood-odds (LOD) interval of the QTL for palmitic acid (R2 = 7.6%) on Chr 2, whereas Cla008157, a homolog to omega-3-fatty acid desaturase and Cla008263, a homolog to FAE, were identified within the 1.5-LOD interval of the QTL for palmitic acid (R2 = 24.7%) on Chr 3. In addition, the QTL for palmitic acid on Chr 3 was located ≈0.60 Mbp from Cla002633, a gene homolog to fatty acyl- [acyl carrier protein (ACP)] thioesterase B. A gene (Cla009335) homolog to ACP was found within the flanking markers of the QTL for oleic acid (R2 = 17.9%) and linoleic acid (R2 = 21.5%) on Chr 6, whereas Cla010780, a gene homolog to acyl-ACP desaturase was located within the QTL for stearic acid (R2 = 10.2%) on Chr 7. On Chr 8, another gene (Cla013862) homolog to acyl-ACP desaturase was found within the 1.5-LOD interval of the QTL for oleic acid (R2 = 13.5%). The genes identified in this study are possible candidates for the development of functional markers for application in marker-assisted selection for fatty acid composition in watermelon seed. To the best of our knowledge, this is the first study that aimed to elucidate genetic control of the fatty acid composition of watermelon seed.


1970 ◽  
Vol 46 (1) ◽  
pp. 127-132 ◽  
Author(s):  
BK Paul ◽  
MMU Munshi ◽  
MN Ahmed ◽  
GC Saha ◽  
SK Roy

The fresh rhizomes of Curcuma longa Linn. (Turmeric or Holud) collected from three different places of Bangladesh were investigated to extract oil, its fatty acid composition and its physico-chemical properties. The rhizomes contained 8.76 - 10.92% oil. The percentage compositions of fatty acids were identified and quantified by GLC. The saturated and unsaturated fatty acid contents of three places were found to vary within 22.25 - 23.44% and 76.11 - 77.59%, respectively. Among identified six fatty acids, oleic acid contributed the highest proportion (56.24 - 58.88%), followed by myristic acid (16.25 - 17.71%); whilst, palmitic (5.59 - 6.00%), linoleic (10.90 - 12.82%), linolenic (4.15 - 5.46%) and ecosenoic acid (2.72 - 3.25%) together contributed the rest. Physico - chemical properties of the extracted oil were also investigated. The specific gravity, refractive index, optical rotation were recorded as 0.892 to 0.919 at 30°C, 1.431 to 1.465 at 30°C and +11.54° to +13.56° at 26°C, respectively. The chemical properties like saponification value (195.23 - 205.33), iodine value (75.53 - 90.47), peroxide value (23.25 - 36.16), acid value (11.08 - 11.32), ester value (56.30 - 64.13) and percentage of unsaponifiable matter (8.31 - 15.04%) were determined. Overall fresh Turmeric oil can be considered as a good source of oleic acid. Keywords: Curcuma longa; Fresh turmeric oil; Fatty acid composition; Oleic acid; Gas liquid chromatography. DOI: http://dx.doi.org/10.3329/bjsir.v46i1.8116 Bangladesh J. Sci. Ind. Res. 46(1), 127-132, 2011


americanum) [29]. Among wheat, tetraploid durum wheat contained higher FL contents than the U.S. hard winter NSTL shows the highest NL:PoL ratio. wheats. Larsen et al. [66] reported New Zealand wheat flour Among all grains, wheat is the richest in GL, followed FL content ranges of 67-85 mg/10 g (db) for the 1984 crop by triticale, rye, and barley. Millet lipids from P. ameri-and 93-108 mg/10 g (db) for the 1985 wheat crop (Table 4). canum seed [29], corn, and sorghum lipids contain the Ten Greek bread wheat flours [67] contained lipid ranges lowest GL content. However, other researchers [32] report-similar to those in U.S. Kansas flours reported by Chung et ed that GL contents ranged from 6 to 14% for millet lipids al. [61]. Australian scientists [68,69] also investigated their that were extracted by hot water—saturated butanol and wheat FL. Compared with the means of U.S. wheat and acid hydrolysis. flour FL [61], Australian wheats contained substantially In general, PL also are more abundant in wheat, triti-less FL and NL but higher PL. Australian flours contained cale, rye lipids and slightly lower in barley, oat groats, similar FL and NL but still higher PoL content (Table 4). sorghum, and rice. Although corn NSTL were found to have higher PL contents than GL contents, they were very low in PL compared to other grains. Millet NSTL from P. C. Fatty Acid Composition of Grain Lipids americanum seed [29] contains the lowest PL content of All cereal grain lipids are rich in unsaturated fatty acids all the grains. (FA) (Table 5). Palmitic acid (16:0) is a major saturated Wheat flour FL, a minor component, have been report-FA, and linoleic acid (18:2) is a major unsaturated FA for ed to have a significant effect on bread-making. When the all cereals except for brown rice. In brown rice, oleic acid defatted flours were reconstituted with the extracted lipids (18:1) is a major unsaturated FA. The presence of palmi-to their original levels, the PoL fraction of FL but not the toleic acid (16:1) and eicosenoic acid (20:1) is reported NL completely restored loaf volume and crumb grain quite often but usually at levels below 1% of total FA com-[59,60]. Among wheat flour lipids, GL are the best bread position. loaf volume improvers [19-21]. Fatty acid compositions are generally similar for barley, In 1982, Chung et al. [61] reported a range of 177-230 rye, triticale, and wheat lipids. Rye lipids are somewhat mg/10 g (db) for wheat FL contents of 21 HRW wheats higher in linolneic acid (18:3) than those of other cereals. (Table 4). Flours showed 83-109 mg FL, 67-84 mg NL, Oat lipid FA composition is similar to that of brown rice, and 11-27 mg PoL with NL:PoL ratios of 2.5-6.9. Ohm because oats and brown rice are rich in oleic acid. Millet and Chung [62] also investigated the FL contents of flours lipids are generally higher in stearic acid (18:0) than all from 12 commercial hard winter wheat cultivars grown at other cereal lipids. six locations and reported the cultivar mean ranges of There are wide ranges in FA compositions of corn oils 90-109 mg/10 g (db) for total flour FL, 72-85 mg for NL, (Table 6). Jellum [82] reported a range of 14-64% oleic 11-16 mg for GL, 1.7-3.1 mg for monogalactosyldiglyc-acid and 19-71% linoleic acid for the world collection of erides (MGDG), 5.3-6.5 mg for digalactosyldiglycerides 788 varieties of corn (Table 6). The wide ranges in FA com-(DGDG), and 5-7 mg for PL (Table 4). The ratios of NL to position were due to more lines having been examined in PoL were in a much narrower range than those of earlier corn than in any of the other cereal grains [1]. Dunlap et al. work by Chung et al. [61]. This was probably due to a [86,87] reported on corn genotypes with unusual fatty acid smaller variation in the released cultivars used by Ohm compositions (Table 6). They found palmitic acid ranges of and Chung [62]. Samples used by Chung et al. [61] includ-6.3-7.6% and 16.7-18.2% for low and high saturated corn ed some experimental lines. genotypes, respectively. They also reported a range of Bekes et al. [63] investigated 22 hard and 4 soft spring 43.9-46.1% of oleic acids for high oleic acid lines. wheat varieties grown at 3 locations in Canada: varietal Fatty acid composition differs depending on the lipid means ranged from 72 to 134 mg per 10 g (db) flour for extractant (Tables 5 and 6). For example, FL were higher FL, 61-115 mg for NL, 4-11 mg for GL, and 4-9 mg for in both oleic and linoleic acids than the BL of corn and PL (Table 4). There were larger variations in FL contents pearl millet, whereas FL were lower in palmitic acid than for Canadian spring wheats than for U.S. hard winter the BL of millet, oats, and corn. The FA composition of wheats except for GL. Chung [64] showed that U.S. winter NSTL from corn is intermediate to those of FL and BL and spring wheats could not be differentiated by lipid con-based on data complied by Morrison [3]. tents and compositions. Wheat lipid FA compositions for different classes or Unlike the Canadian spring wheats [63], the U.K. soft subclasses are shown in Table 7. The average of 6 HWW winter wheats [65] contained more FL (195-244 mg/10 g, wheats and 14 SWS wheat lipids was lower in palmitic and db) with higher NL content than hard winter wheats stearic acids and higher in linoleic and linolenic acids than (186-210 mg/10 g, db). In general, U.K. hard spring wheats the overall average of 290 wheat lipids. The average FA


Blood ◽  
1995 ◽  
Vol 85 (5) ◽  
pp. 1323-1330 ◽  
Author(s):  
T Engan ◽  
KS Bjerve ◽  
AL Hoe ◽  
J Krane

The purpose of this study was to characterize possible changes in fatty acid composition of plasma lipids associated with malignancy. The very low, low, and high-density lipoproteins were isolated by gradient density ultracentrifugation of plasma from 16 patients with malignant disease and from 15 controls. The triglyceride, esterified cholesterol, and phospholipid constituents of each lipoprotein fraction were isolated, and the fatty acid composition within each lipid component was determined by gas liquid chromatography (GLC). In the 10- to 45- parts-per-million (ppm) region of the carbon-13 (13C) nuclear magnetic resonance (NMR) plasma spectrum, differences were found between patients with malignant disease and controls. The ratio of the 31.6/32.1 ppm resonance intensities was lower in the group of cancer patients. The ratio of the 24.4/24.9 ppm resonance intensities in patients with malignant disease was different from the nonpregnant controls. The NMR changes were interpreted in light of GLC data that indicated derangements in the composition of fatty acids within lipoprotein lipids. In total plasma esterified cholesterol, the relative amount of linoleic acid (18:2, n-6) was lower, whereas oleic acid (18:1, n-9) was higher in the group of patients with malignant disease. In total plasma triglycerides, the amount of oleic acid was higher in the cancer patient group. For total plasma phospholipids, no differences in fatty acid composition between patients and controls were found. Throughout the lipoprotein fractions, the same differences in oleic acid and linoleic acid distribution for triglyceride and esterified cholesterol were found when comparing cancer and control subjects. In conclusion, we found that there are certain differences in the 13C NMR spectra and fatty acid profiles between a small and heterogeneous group of cancer patients after they have received their initial treatment and a group of healthy controls. We suggest that carbon NMR spectroscopy could be useful in characterizing malignancy- associated lipid changes.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 610 ◽  
Author(s):  
Vasiliki Skiada ◽  
Panagiotis Tsarouhas ◽  
Theodoros Varzakas

While there has been considerable research related to Koroneiki cultivar in different areas in Greece, no systematic work has been carried out on olive oil analysis from one of the most important olive-growing regions in Greece, located southwest of Peloponnese, Messinia. This work is the first systematic attempt to study the profile of Messinian olive oils and evaluate to what extent they comply with the recent EU regulations in order to be classified as “Kalamata Protected Designation of Origin (PDO)”-certified products. Quality indices were measured and detailed analyses of sterols, triterpenic dialcohols, fatty acid composition and wax content were conducted in a total of 71 samples. Messinian olive oils revealed a high-quality profile but, at the same time, results demonstrated major fluctuations from the established EU regulatory limits on their chemical parameters. Results showed low concentrations of total sterols, with 66.7% of the examined samples below the regulated set limits for Kalamata PDO status; high concentrations of campesterol, with a total of 21.7%, exceeding the legal maximum of 4.0%; and a slight tendency of high total erythrodiol content. Fatty acid composition and wax content were within the normal range expected for the extra virgin olive oil (EVOO) category. However, the narrower established PDO limits in specific fatty acids showed some fluctuations in a few cases.


1984 ◽  
Vol 56 (1) ◽  
pp. 33-38
Author(s):  
Veikko Kankare ◽  
Veijo Antila

Finnish milk fat is relatively hard, particularly during the indoor feeding period. For reasons of both dairy technology and nutrition, however, it would be advantageous to obtain a softer fat. On the basis of the initial experiments, it would appear that the feed concentrates used, particularly their grain component, have a effect on the composition of milk fat. For this reasons, a comparative study of the effect of oats and barley on the fatty acid composition of milk fat was being carried out in the winter of 1983. In a comparison of barley and oats, it was observed that the iodine value of the milk in the experimental group which was fed barley was 5.1 units lower than that of the group fed oats. By itself, the feeding of barley alone was also responsible fora sharp decrease in iodine values when compared to the results obtained during the pre-experimental phase during which the cows were fed barley and oats in a ratio of 1:1.The softening effect of oats on milk fat appeared to be slight when the results from the experimental phase were compared to those of the pre-experimental phase. In a comparison of the fatty acid composition of milk fat in samples from the barley and oats groups, it was found that the greatest differences were in the amounts of palmitic acid (C16) and oleic acid (C18:1) present. The amount of palmitic acid in the milk fat of the barley group was 36.6 %, and in that of the oats group 30.2 %. The corresponding amounts of oleic acid were 14.7 % and 22.1 %. On the basis of this study, it is recommended that oats should be preferred in making up feed concentrate mixtures for milk cows.


Author(s):  
R.M. Papaev ◽  
◽  
G.G. Shalamova ◽  
T.Yu. Motina ◽  
◽  
...  

The article presents the results of studies of the fatty acid composition of the muscle tissue of barbs at the age of 4 and 8 months. It was established by gas-liquid chromatography that the composition contained saturated and mono- and polyunsaturated fatty acids: palmitic, palmitoleic, stearic, arachidic, cis-linoleic, cis-oleic, alpha-linolenic, erucic and selacholic. In adults, in compari-son with juveniles, the content of palmitic and stearic acids was higher by 21.6 and 17.7 %. In barbs at the age of 4 months, in comparison with adults, the content of palmitoleic acid was lower by 42.6 %, cis-oleic acid by 10.4 %, cis-linoleic acid – by 9.3 % and selacholic acid – by 8.3 %. In juvenile barbs, alpha-linoleic and erucic acids were absent, and in adults at the age of 8 months, arachidic acid was absent.


Sign in / Sign up

Export Citation Format

Share Document