scholarly journals 171 Young Scholar Presentation: Dietary supplementation of Bacillus subtilis influenced intestinal health and metabolomic profiles of weaned pigs experimentally infected with a pathogenic E. coli

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 76-77
Author(s):  
Kwangwook Kim ◽  
Yijie He ◽  
Xia Xiong ◽  
Amy Ehrlich ◽  
Xunde Li ◽  
...  

Abstract There is growing evidence to support the beneficial effects of supplementing direct-fed microbials (DFM) on performance, health status, and immune responses of weaned pigs. Therefore, the objective of this study was to investigate dietary supplementation of Bacillus subtilis (DSM 25841) on growth performance, diarrhea, gut permeability, immunity and metabolomic profiles of weaned pigs experimentally infected with a pathogenic F18 Escherichia coli (E. coli). E. coli infection reduced (P < 0.05) growth performance and intestinal villi height, whereas increased (P < 0.05) diarrhea and permeability in the jejunum compared with non-challenged control. Supplementation of Bacillus subtilis linearly enhanced average daily gain of E. coli infected pigs (d 0 to 5 post-inoculation (PI), P < 0.05; d 0 to 11 PI, P = 0.058). Inclusion of high dose Bacillus subtilis reduced (P < 0.05) jejunal permeability on d 5 and d 11 PI compared with the E. coli challenged control. E. coli challenged control pigs up-regulated (P < 0.05) the mRNA expression of SLC5A10 and MUC2 on d 5 PI, but down-regulated (P < 0.05) expression of SLC5A10, MUC2, and CLDN1 on d 11 PI in jejunal mucosa. Supplementation of Bacillus subtilis linearly up-regulated (P < 0.05) the mRNA expression of CFTR and ZO1 on d 5 PI and SLC5A10 and MUC2 on d 11 PI in jejunal mucosa of E. coli infected pigs. E. coli infection increased (P < 0.05) the mRNA expression of several immune genes in the ileal mucosa, while inclusion of Bacillus subtilis linearly down-regulated gene expression of IL1A on d 5 PI (P = 0.07) and IL6 on d 11 PI (P < 0.05) in ileal mucosa of E. coli infected pigs. Supplementation of Bacillus subtilis modified (Fold change > 1.5; FDR < 0.20) metabolomic profiles in colon digesta, related to pathogenesis and amino acid metabolism. In conclusion, supplementation of Bacillus subtilis enhanced growth rate, improved gut health, and modified metabolomic profiles of weaned pigs experimentally infected with a pathogenic E. coli.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yijie He ◽  
Cynthia Jinno ◽  
Kwangwook Kim ◽  
Zhaohai Wu ◽  
Bie Tan ◽  
...  

Abstract Background Previous research has shown that dietary supplementation of Bacillus spp. probiotics exerts beneficial effects on animals’ growth. However, limited studies have evaluated the efficacy of Bacillus spp. on weaned pigs and their effects on host gut health and microbiome, and systemic immunity using a disease challenge model. The objective of this experiment was to investigate the effects of two Bacillus spp. strains (Bacillus subtilis DSM 32540 and Bacillus pumilus DSM 32539) on growth performance, diarrhea, intestinal health, microbiome, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC). Results Pigs in PRO1 (Bacillus subtilis DSM 32540) had greater (P < 0.05) body weight on d 7 and 14 PI, greater (P < 0.05) ADG from d 0 to 7 and d 7 to 14 PI, compared with pigs in CON (Control). Pigs in PRO1 had milder (P < 0.05) diarrhea on d 2 and 3 PI compared with pigs in CON. However, no differences were observed in growth performance and diarrhea score between PRO2 (Bacillus pumilus DSM 32539) and CON groups. Supplementation of PRO1 decreased (P < 0.05) lymphocyte counts on d 7 and 14 PI, compared with CON. Supplementation of PRO1 and PRO2 both reduced (P < 0.05) total coliforms in mesenteric lymph nodes on d 21 PI. Pigs in PRO2 had greater (P < 0.05) goblet cell number and sulfomucin percentage in duodenal villi and greater (P < 0.05) sialomucin percentage in jejunal villi than pigs in CON. Supplementation of PRO1 up-regulated (P < 0.05) MUC2 gene expression in jejunal mucosa and reduced (P < 0.05) PTGS-2 and IL1B gene expression in ileal mucosa on d 21 PI, compared with CON. Pigs in PRO1 had reduced (P < 0.05) relative abundance of families Lachnospiraceae, Peptostreptococcaceae and Pasteurellaceae in the ileum. Conclusions Supplementation of Bacillus subtilis DSM 32540 improved growth performance, alleviated diarrhea severity, enhanced gut health, and reduced systemic inflammation of weaned pigs infected with ETEC F18. Although Bacillus pumilus DSM 32539 was able to alleviate systemic inflammation, it had limited impacts on growth performance and severity of diarrhea of ETEC F18 challenged weaned pigs.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 208-208
Author(s):  
Yijie He ◽  
Kwangwook Kim ◽  
Cynthia Jinno ◽  
Xunde Li ◽  
Yanhong Liu

Abstract This experiment aimed to investigate the effects of dietary supplementation of Bacillus subtilis probiotics on metabolites in the intestines of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (E. coli). Forty-eight weaned pigs (6.17 ± 0.36 kg BW) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox or 500 mg/kg of Bacillus subtilis probiotics. The experiment lasted 28 days with 7 days before and 21 days after the first E. coli inoculation. The F18 E. coli were given to pigs at 1010 CFU/3 mL dose for three consecutive days. At the end of the experiment, all pigs were euthanized to collect ileal mucosa and colon digesta for the analysis of metabolomic profiles by gas chromatography time of flight-mass spectrometer (GCTOF-MS). All data were analyzed by an online MetaboAnalyst tool (https://www.metaboanalyst.ca/). Statistical significance was declared at P &lt; 0.05 and the false discovery rate–adjusted P value (q value) &lt; 0.20. A total of 282 (141 identified and 121 unidentified) and 196 (127 identified and 69 unidentified) metabolites were detected in ileal mucosa and colon digesta, respectively. Forty-nine identified metabolites in ileal mucosa significantly differed among experimental groups (P &lt; 0.05; q &lt; 0.20). The most impacted metabolic pathways were galactose metabolism, aspartate and glutamate metabolism, fructose and mannose degradation, pentose phosphate pathway, and urea cycle. However, in colon digesta, only 7 identified metabolites differed among experimental groups (P &lt; 0.05; q &lt; 0.20) and the majority of them were involved in purine metabolism. Results of metabolomics indicated that supplementation of Bacillus subtilis or antibiotics altered metabolites in the intestines of weaned pigs. In particular, more treatment impacts were observed in the metabolite profiles in ileal mucosa compared with colon digesta.


2020 ◽  
Vol 98 (9) ◽  
Author(s):  
Yijie He ◽  
Kwangwook Kim ◽  
Lauren Kovanda ◽  
Cynthia Jinno ◽  
Minho Song ◽  
...  

Abstract The study was conducted to investigate the efficacy of a probiotic Bacillus subtilis strain on growth performance, diarrhea, systemic immunity, and intestinal health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli and to compare the efficacy of B. subtilis with that of carbadox. Weaned pigs (n = 48, 6.17 ± 0.36 kg body weight [BW]) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox (antibiotic growth promotor [AGP]) or 2.56 × 109 CFU/kg of B. subtilis probiotics (PRO). The experiment lasted for 28 d with 7 d before and 21 d after the first E. coli inoculation. Fecal and blood samples were collected on days 0, 3, 7, 14, and 21 post inoculation (PI) to analyze β-hemolytic coliforms and complete blood cell count, respectively. Diarrhea score was recorded daily for each pig to calculate the frequency of diarrhea. All pigs were euthanized at day 21 PI to collect jejunal and ileal mucosa for gene expression analysis. Pigs in AGP had greater (P &lt; 0.05) BW on days 7, 14, and 21 PI than pigs in PC and PRO groups. Supplementation of PRO enhanced pigs’ BW on day 21 PI compared with the PC. Escherichia coli F18 challenge reduced (P &lt; 0.05) average daily gain (ADG) and feed efficiency from day 0 to 21 PI, while supplementation of carbadox or PRO enhanced ADG and feed efficiency in E. coli F18-challenged pigs from day 0 to 21 PI. Pigs in AGP and PRO groups had reduced (P &lt; 0.05) frequency of diarrhea throughout the experiment and fecal β-hemolytic coliforms on day 7 PI than pigs in the PC. Pigs in PRO had greater (P &lt; 0.05) gene expression of CLDN1 in jejunal mucosa than pigs in the PC. Supplementation of carbadox or PRO reduced (P &lt; 0.05) the gene expression of IL6 and PTGS2 in ileal mucosa of E. coli-infected pigs compared with pigs in the PC. Pigs in the PRO group had lower (P &lt; 0.05) white blood cell number and neutrophil count, and serum haptoglobin concentration on day 7 PI, and less (P &lt; 0.05) monocyte count on day 14 PI, compared with PC. In conclusion, supplementation of probiotic B. subtilis could enhance disease resistance and promote the growth performance of weaned pigs under disease challenge conditions. The potential mechanisms include but not limited to enhanced gut barrier integrity and local and systemic immune responses of weaned pigs.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 29-29
Author(s):  
Braden T Wong ◽  
Yijie He ◽  
Kwangwook Kim ◽  
Sharon Xu ◽  
Christopher Lingga ◽  
...  

Abstract The objective of this study was to investigate the effects of dietary botanical supplementation on growth performance and frequency of diarrhea of weaned piglets experimentally infected with a pathogenic F18 Escherichia coli (E. coli). Sixty weaned piglets (around 21 days old; 7.15 ± 0.97 kg) were individually housed and randomly allotted to one of five dietary treatments (n = 12): negative control (NC), positive control (PC), high dose of botanicals blend 1 (BB1, 100 ppm), low dose of botanicals blend 2 (BB2, 50 ppm), and high dose of botanicals blend 2 (BB2, 100 ppm). The experiment lasted 28 days: from day -7 to +21 relative to E. coli inoculation. All piglets except the pigs in the NC group were orally inoculated with F18 E. coli (1010 cfu per dose, 3 doses) for 3 consecutive days. Growth performance was recorded throughout the experiment and diarrhea scores were recorded daily. Data were analyzed by ANOVA using PROC MIXED of SAS with a randomized complete block design. E. coli challenge reduced (P &lt; 0.05) pig body weight and growth rate throughout the experiment. Pigs supplemented with high dose BB1 or BB2 tended (P &lt; 0.10) to have greater body weight (19.52 and 19.10 vs. 18.00 kg) on d 21 PI and greater average daily gain from d 0 to 21 PI (554 and 557 vs. 515 g/d) than PC. No differences were observed in pig performance between high dose BB1 or BB2 in comparison with NC. Supplementation of high dose BB1 or BB2 also reduced (P &lt; 0.05) frequency and severity of diarrhea of challenged pigs during the entire experimental period. In conclusion, dietary supplementation of botanicals reduced diarrhea and tended to improve growth performance of weaned pigs infected with E. coli.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Sangwoo Park ◽  
Jung Wook Lee ◽  
Kevin Jerez Bogota ◽  
David Francis ◽  
Jolie Caroline González-Vega ◽  
...  

Abstract This study was conducted to investigate the effects of a direct-fed microbial (DFM) product (Bacillus subtilis strain DSM 32540) in weaned pigs challenged with K88 strain of Escherichia coli on growth performance and indicators of gut health. A total of 21 weaned pigs [initial body weight (BW) = 8.19 kg] were housed individually in pens and fed three diets (seven replicates per diet) for 21 d in a completely randomized design. The three diets were a corn-soybean meal-based basal diet without feed additives, a basal diet with 0.25% antibiotics (neo-Oxy 10-10; neomycin + oxytetracycline), or a basal diet with 0.05% DFM. All pigs were orally challenged with a subclinical dose (6.7 × 108 CFU/mL) of K88 strain of E. coli on day 3 of the study (3 d after weaning). Feed intake and BW data were collected on days 0, 3, 7, 14, and 21. Fecal scores were recorded daily. On day 21, pigs were sacrificed to determine various indicators of gut health. Supplementation of the basal diet with antibiotics or DFM did not affect the overall (days 0–21) growth performance of pigs. However, antibiotics or DFM supplementation increased (P = 0.010) gain:feed (G:F) of pigs during the post-E. coli challenge period (days 3–21) by 23% and 24%, respectively. The G:F for the DFM-supplemented diet did not differ from that for the antibiotics-supplemented diet. The frequency of diarrhea for pigs fed a diet with antibiotics or DFM tended to be lower (P = 0.071) than that of pigs fed the basal diet. The jejunal villous height (VH) and the VH to crypt depth ratio (VH:CD) were increased (P &lt; 0.001) by 33% and 35%, respectively, due to the inclusion of antibiotics in the basal diet and by 43% and 41%, respectively due to the inclusion of DFM in the basal diet. The VH and VH:CD for the DFM-supplemented diet were greater (P &lt; 0.05) than those for the antibiotics-supplemented diet. Ileal VH was increased (P &lt; 0.05) by 46% due to the inclusion of DFM in the basal diet. The empty weight of small intestine, cecum, or colon relative to live BW was unaffected by dietary antibiotics or DFM supplementation. In conclusion, the addition of DFM to the basal diet improved the feed efficiency of E. coli-challenged weaned pigs to a value similar to that of the antibiotics-supplemented diet and increased jejunal VH and VH:CD ratio to values greater than those for the antibiotics-supplemented diet. Thus, under E. coli challenge, the test DFM product may replace the use of antibiotics as a growth promoter in diets for weaned pigs to improve feed efficiency and gut integrity.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Kwangwook Kim ◽  
Yijie He ◽  
Cynthia Jinno ◽  
Lauren Kovanda ◽  
Xunde Li ◽  
...  

Abstract Background There is a great demand for antibiotic alternatives to maintain animal health and productivity. The objective of this experiment was to determine the efficacy of dietary supplementation of a blood group A6 type 1 antigen oligosaccharides-based polymer (Coligo) on growth performance, diarrhea severity, intestinal health, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC), when compared with antibiotics. Results Pigs in antibiotic carbadox or Coligo treatment groups had greater (P < 0.05) body weight on d 5 or d 11 post-inoculation (PI) than pigs in the control group, respectively. Supplementation of antibiotics or Coligo enhanced (P < 0.05) feed efficiency from d 0 to 5 PI and reduced (P < 0.05) frequency of diarrhea throughout the experiment, compared with pigs in the control group. Supplementation of antibiotics reduced (P < 0.05) fecal β-hemolytic coliforms on d 2, 5, and 8 PI. Pigs in antibiotics or Coligo groups had reduced (P < 0.05) neutrophil counts and serum haptoglobin concentration compared to pigs in the control group on d 2 and 5 PI. Pigs in Coligo had reduced (P < 0.05) total coliforms in mesenteric lymph nodes on d 5 and 11 PI, whereas pigs in antibiotics or Coligo groups had reduced (P < 0.05) total coliforms in spleen on d 11 PI compared with pigs in the control group. On d 5 PI, pigs in the Coligo group had greater (P < 0.05) gene expression of ZO1 in jejunal mucosa, but less (P < 0.05) mRNA expression of IL1B, IL6, and TNF in ileal mucosa, in comparison with pigs in the control group. Supplementation of antibiotics enhanced (P < 0.05) the gene expression of OCLN in jejunal mucosa but decreased (P < 0.05) IL1B and IL6 gene expression in ileal mucosa, compared with the control. On d 11 PI, supplementation of antibiotics or Coligo up-regulated (P < 0.05) gene expression of CLDN1 in jejunal mucosa, but Coligo reduced (P < 0.05) IL6 gene expression in ileal mucosa compared to pigs in the control group. Conclusions Supplementation of Coligo improved growth performance, alleviated diarrhea severity, and enhanced gut health in weaned pigs infected with ETEC F18 in a manner similar to in-feed antibiotics.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 79-80
Author(s):  
Yijie He ◽  
Kwangwook Kim ◽  
Cynthia Jinno ◽  
Lauren Kovanda ◽  
Seijoo Yang ◽  
...  

Abstract The objective of this experiment was to investigate the effects of Bacillus subtilis on growth performance, diarrhea and fecal β-hemolytic coliforms of weaned pigs experimentally infected with a strain of E. coli (F18, express genes of LT, STb, and SLT 2 toxins). Weaned pigs (n = 48, 6.17 ± 0.36 kg BW) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox or 500 mg/kg of Bacillus subtilis probiotics. The experiment lasted 28 d with 7 d before and 21 d after the first E. coli inoculation. The F18 E. coli were given to pigs at 1010 CFU/3 mL dose for three consecutive d. Diarrhea score was daily recorded for each pig to calculate frequency of diarrhea. Fecal samples were collected on d 0, 3, 7, 14, and 21 PI to analyze β-hemolytic coliforms. Data were analyzed using the Mixed Procedure of SAS. Pigs supplemented with carbadox had greater (P < 0.05) body weight on d 7, 14, and 21 PI than pigs in the PC and probiotics group. Supplementation of probiotics enhanced pig body weight on d 21 PI, compared with the PC. E. coli challenge reduced (P < 0.05) ADG and feed efficiency from d 0 to 21 PI, while supplementation of antibiotics or probiotics enhanced ADG and feed efficiency from d 0 to 21 PI. Pigs in carbadox and probiotics groups had reduced (P < 0.05) frequency of diarrhea throughout the experiment and fecal β-hemolytic coliforms on d 7 PI than pigs in the PC. In conclusion, supplementation of Bacillus subtilis could enhance disease resistance and promote growth performance of weaned pigs under disease challenge condition.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 203-203
Author(s):  
Kwangwook Kim ◽  
Yanhong Liu

Abstract Our previous studies have shown that supplementation of Bacillus subtilis enhanced growth rate, improved gut barrier function, and modified colon microbiome of weaned pigs infected with pathogenic Escherichia coli (E. coli). The objective of this experiment was to investigate the effects of Bacillus subtilis on colon digesta metabolomic profiles of weaned pigs experimentally infected with F18 E. coli. Forty-eight pigs (6.73 ± 0.77 kg BW) were individually housed in disease containment rooms and randomly allotted to one of the four treatments (12 pigs/treatment). Four treatments included negative control (NC), positive control (PC), low-dose (1.28 × 109 CFU Bacillus subtilis/kg feed), and high-dose (2.56 × 109 CFU Bacillus subtilis/kg feed). The experiment lasted 18 d [7 d before and 11 d after first inoculation (d 0)]. The F18 E. coli inoculum was orally provided to all pigs with the dose of 1010 cfu/3 mL for 3 consecutive days, except NC. Twenty-four pigs (6 pigs/treatment) were euthanized on d 5 post-inoculation (PI) and the remained pigs were euthanized on d 11 PI to collect colon digesta for the analysis of metabolomic profiles by gas chromatography time of flight-mass spectrometer (GCTOF-MS). All processed data were statistically analyzed and evaluated by online MetaboAnalyst tool. No significant differences were observed in the metabolites between NC and PC on d 5 and 11 PI. Compared with PC, low- and high-dose Bacillus subtilis reduced (Fold change &gt; 1.5; FDR &lt; 0.20) four metabolites (proline, 2-hydroxyglutaric acid, lysine, and glutamic acid) and two metabolites (ribose, and D-xylulose) in colon digesta on d 5 PI, respectively. These metabolites were related to aminoacyl-tRNA-biosynthesis, arginine and proline metabolism, and lysine degradation. In conclusion, supplementation of Bacillus subtilis modified the levels of microbial metabolites associated with amino acid metabolism in colon digesta of pigs.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 78-78
Author(s):  
Marcos E Duarte ◽  
James Tyus ◽  
Sung Woo Kim

Abstract This study was to investigate the effect of dietary supplementation with xylanase and probiotic on growth performance, and gut health of nursery pigs challenged with ETEC. Sixty-four weaned pigs (7.9 ± 0.4 kg) were allotted in a RCBD (2 x 2 factorial). ETEC (0, and ETEC, 6 x 109 CFU/mL) and synbiotic (0, and xylanase 10,000 XU/kg combined with Bacillus sp. 6 x 108 CFU/kg) were the factors. ETEC was orally inoculated on d 7. Growth performance were measured on d 7, 10, 15, and 21. On d 21, 48 pigs were euthanized for sampling to measure gut health parameters. Synbiotic increased (P &lt; 0.05) ADG in P1 (53.5 to 96.0 g). Overall, ETEC reduced (P &lt; 0.05) ADG (387.5 to 322.5 g) and G:F (0.810 to 0.706). ETEC increased (P &lt; 0.05) fecal score from d 7 to 13, whereas synbiotic reduced (P &lt; 0.05) it at d 9 and 11 in challenged pigs. ETEC increased (P &lt; 0.05) MDA (0.259 to 0.818 μmol/mg), IL6 (2.96 to 4.30 pg/mg), ki-67+ (29.1 to 33.9%), and crypt depth (260 to 290 μm), whereas synbiotic tended to reduce TNF-α (1.05 to 0.87 pg/mg), protein carbonyl (3.13 to 2.51 nmol/mg), and IL6 (4.07 to 3.19 pg/mg); reduced (P &lt; 0.05) crypt depth (290 to 260 μm), and ki-67+ (32.7 to 30.3%) and increased (P &lt; 0.05) villus height (368.5 to 421.4 μm). ETEC reduced (P &lt; 0.05) abundance of Veillonellaceae (7.11 to 3.02%), tended to reduce (P = 0.067) Clostridiaceae (1.1 to 0.55%), and Prevotellaceae (38.0 to 27.2%) and tended (P = 0.063) to increase Helicobacteraceae (34.5 to 49.5%). Collectively, ETEC reduced growth performance by affecting the microbiome, oxidative stress, and immune response. Synbiotic improve growth performance by enhancing gut health regardless of the challenge, whereas it reduced fecal score in challenged pigs.


Sign in / Sign up

Export Citation Format

Share Document