scholarly journals Bacillus subtilis: a potential growth promoter in weaned pigs in comparison to carbadox

2020 ◽  
Vol 98 (9) ◽  
Author(s):  
Yijie He ◽  
Kwangwook Kim ◽  
Lauren Kovanda ◽  
Cynthia Jinno ◽  
Minho Song ◽  
...  

Abstract The study was conducted to investigate the efficacy of a probiotic Bacillus subtilis strain on growth performance, diarrhea, systemic immunity, and intestinal health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli and to compare the efficacy of B. subtilis with that of carbadox. Weaned pigs (n = 48, 6.17 ± 0.36 kg body weight [BW]) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox (antibiotic growth promotor [AGP]) or 2.56 × 109 CFU/kg of B. subtilis probiotics (PRO). The experiment lasted for 28 d with 7 d before and 21 d after the first E. coli inoculation. Fecal and blood samples were collected on days 0, 3, 7, 14, and 21 post inoculation (PI) to analyze β-hemolytic coliforms and complete blood cell count, respectively. Diarrhea score was recorded daily for each pig to calculate the frequency of diarrhea. All pigs were euthanized at day 21 PI to collect jejunal and ileal mucosa for gene expression analysis. Pigs in AGP had greater (P < 0.05) BW on days 7, 14, and 21 PI than pigs in PC and PRO groups. Supplementation of PRO enhanced pigs’ BW on day 21 PI compared with the PC. Escherichia coli F18 challenge reduced (P < 0.05) average daily gain (ADG) and feed efficiency from day 0 to 21 PI, while supplementation of carbadox or PRO enhanced ADG and feed efficiency in E. coli F18-challenged pigs from day 0 to 21 PI. Pigs in AGP and PRO groups had reduced (P < 0.05) frequency of diarrhea throughout the experiment and fecal β-hemolytic coliforms on day 7 PI than pigs in the PC. Pigs in PRO had greater (P < 0.05) gene expression of CLDN1 in jejunal mucosa than pigs in the PC. Supplementation of carbadox or PRO reduced (P < 0.05) the gene expression of IL6 and PTGS2 in ileal mucosa of E. coli-infected pigs compared with pigs in the PC. Pigs in the PRO group had lower (P < 0.05) white blood cell number and neutrophil count, and serum haptoglobin concentration on day 7 PI, and less (P < 0.05) monocyte count on day 14 PI, compared with PC. In conclusion, supplementation of probiotic B. subtilis could enhance disease resistance and promote the growth performance of weaned pigs under disease challenge conditions. The potential mechanisms include but not limited to enhanced gut barrier integrity and local and systemic immune responses of weaned pigs.

2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Sangwoo Park ◽  
Jung Wook Lee ◽  
Kevin Jerez Bogota ◽  
David Francis ◽  
Jolie Caroline González-Vega ◽  
...  

Abstract This study was conducted to investigate the effects of a direct-fed microbial (DFM) product (Bacillus subtilis strain DSM 32540) in weaned pigs challenged with K88 strain of Escherichia coli on growth performance and indicators of gut health. A total of 21 weaned pigs [initial body weight (BW) = 8.19 kg] were housed individually in pens and fed three diets (seven replicates per diet) for 21 d in a completely randomized design. The three diets were a corn-soybean meal-based basal diet without feed additives, a basal diet with 0.25% antibiotics (neo-Oxy 10-10; neomycin + oxytetracycline), or a basal diet with 0.05% DFM. All pigs were orally challenged with a subclinical dose (6.7 × 108 CFU/mL) of K88 strain of E. coli on day 3 of the study (3 d after weaning). Feed intake and BW data were collected on days 0, 3, 7, 14, and 21. Fecal scores were recorded daily. On day 21, pigs were sacrificed to determine various indicators of gut health. Supplementation of the basal diet with antibiotics or DFM did not affect the overall (days 0–21) growth performance of pigs. However, antibiotics or DFM supplementation increased (P = 0.010) gain:feed (G:F) of pigs during the post-E. coli challenge period (days 3–21) by 23% and 24%, respectively. The G:F for the DFM-supplemented diet did not differ from that for the antibiotics-supplemented diet. The frequency of diarrhea for pigs fed a diet with antibiotics or DFM tended to be lower (P = 0.071) than that of pigs fed the basal diet. The jejunal villous height (VH) and the VH to crypt depth ratio (VH:CD) were increased (P < 0.001) by 33% and 35%, respectively, due to the inclusion of antibiotics in the basal diet and by 43% and 41%, respectively due to the inclusion of DFM in the basal diet. The VH and VH:CD for the DFM-supplemented diet were greater (P < 0.05) than those for the antibiotics-supplemented diet. Ileal VH was increased (P < 0.05) by 46% due to the inclusion of DFM in the basal diet. The empty weight of small intestine, cecum, or colon relative to live BW was unaffected by dietary antibiotics or DFM supplementation. In conclusion, the addition of DFM to the basal diet improved the feed efficiency of E. coli-challenged weaned pigs to a value similar to that of the antibiotics-supplemented diet and increased jejunal VH and VH:CD ratio to values greater than those for the antibiotics-supplemented diet. Thus, under E. coli challenge, the test DFM product may replace the use of antibiotics as a growth promoter in diets for weaned pigs to improve feed efficiency and gut integrity.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 79-80
Author(s):  
Yijie He ◽  
Kwangwook Kim ◽  
Cynthia Jinno ◽  
Lauren Kovanda ◽  
Seijoo Yang ◽  
...  

Abstract The objective of this experiment was to investigate the effects of Bacillus subtilis on growth performance, diarrhea and fecal β-hemolytic coliforms of weaned pigs experimentally infected with a strain of E. coli (F18, express genes of LT, STb, and SLT 2 toxins). Weaned pigs (n = 48, 6.17 ± 0.36 kg BW) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox or 500 mg/kg of Bacillus subtilis probiotics. The experiment lasted 28 d with 7 d before and 21 d after the first E. coli inoculation. The F18 E. coli were given to pigs at 1010 CFU/3 mL dose for three consecutive d. Diarrhea score was daily recorded for each pig to calculate frequency of diarrhea. Fecal samples were collected on d 0, 3, 7, 14, and 21 PI to analyze β-hemolytic coliforms. Data were analyzed using the Mixed Procedure of SAS. Pigs supplemented with carbadox had greater (P < 0.05) body weight on d 7, 14, and 21 PI than pigs in the PC and probiotics group. Supplementation of probiotics enhanced pig body weight on d 21 PI, compared with the PC. E. coli challenge reduced (P < 0.05) ADG and feed efficiency from d 0 to 21 PI, while supplementation of antibiotics or probiotics enhanced ADG and feed efficiency from d 0 to 21 PI. Pigs in carbadox and probiotics groups had reduced (P < 0.05) frequency of diarrhea throughout the experiment and fecal β-hemolytic coliforms on d 7 PI than pigs in the PC. In conclusion, supplementation of Bacillus subtilis could enhance disease resistance and promote growth performance of weaned pigs under disease challenge condition.


2021 ◽  
Vol 99 (3) ◽  
Author(s):  
Kwangwook Kim ◽  
Yijie He ◽  
Cynthia Jinno ◽  
Lauren Kovanda ◽  
Xunde Li ◽  
...  

Abstract The experiment was conducted to investigate the effects of trace amounts of antibiotic on growth performance, diarrhea, systemic immunity, and intestinal health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli. Weaned pigs (n = 34, 6.88 ± 1.03 kg body weight [BW]) were individually housed in disease containment rooms and randomly allotted to one of the three dietary treatments: nursery basal diet (CON) and two additional diets supplemented with 0.5 or 50 mg/kg carbadox to the nursery basal diet (TRA or REC), respectively. The experiment lasted 18 d with 7 d before and 11 d after the first E. coli inoculation. The E. coli F18 inoculum was orally provided to all pigs with a dose of 1010 colony-forming unit (CFU)/3 mL for three consecutive days. Fecal and blood samples were collected on day 0 before inoculation and days 2, 5, 8, and 11 postinoculation (PI) to test the percentage of β-hemolytic coliforms in total coliforms and complete blood cell count, respectively. Sixteen pigs were euthanized on day 5 PI, whereas the remaining pigs were euthanized at the end of the experiment to collect the jejunal and ileal mucosa and mesenteric lymph node for gene expression and bacterial translocation, respectively. Pigs in REC had greater (P &lt; 0.05) final BW and lower (P &lt; 0.05) overall frequency of diarrhea compared with pigs in the CON and TRA groups. Pigs in TRA had the lowest (P &lt; 0.05) average daily gain and feed efficiency from day 0 to 5 PI, highest (P &lt; 0.05) percentage of β-hemolytic coliforms in fecal samples on days 2 and 5 PI, and greatest (P &lt; 0.05) bacterial colonies in mesenteric lymph nodes on day 11 PI compared with pigs in the CON and REC groups. Pigs in TRA had the greatest (P &lt; 0.05) neutrophils on day 5 PI and higher (P &lt; 0.05) white blood cell counts and lymphocytes than other groups on day 11 PI. Pigs in TRA had the greatest (P &lt; 0.05) serum C-reactive protein on days 2 and 5 PI and serum tumor necrosis factor-α on day 5 PI, compared with pigs in the CON and REC groups. Pigs fed REC had increased (P &lt; 0.05) mRNA expression of zona occludens-1 (ZO-1) and occludin (OCDN) and reduced (P &lt; 0.05) interleukin-1 beta (IL1B), interleukin-6 (IL6), and tumor necrosis factor-alpha (TNFA) in ileal mucosa on day 5 PI, compared with the CON, whereas TRA upregulated (P &lt; 0.05) mRNA expression of IL1B, IL6, and cyclooxygenase-2 (COX2) in the ileal mucosa on day 11 PI, compared with the REC. In conclusion, trace amounts of antibiotic may exacerbate the detrimental effects of E. coli infection on pig performance by increasing diarrhea and systemic inflammation of weanling pigs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yijie He ◽  
Cynthia Jinno ◽  
Kwangwook Kim ◽  
Zhaohai Wu ◽  
Bie Tan ◽  
...  

Abstract Background Previous research has shown that dietary supplementation of Bacillus spp. probiotics exerts beneficial effects on animals’ growth. However, limited studies have evaluated the efficacy of Bacillus spp. on weaned pigs and their effects on host gut health and microbiome, and systemic immunity using a disease challenge model. The objective of this experiment was to investigate the effects of two Bacillus spp. strains (Bacillus subtilis DSM 32540 and Bacillus pumilus DSM 32539) on growth performance, diarrhea, intestinal health, microbiome, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC). Results Pigs in PRO1 (Bacillus subtilis DSM 32540) had greater (P < 0.05) body weight on d 7 and 14 PI, greater (P < 0.05) ADG from d 0 to 7 and d 7 to 14 PI, compared with pigs in CON (Control). Pigs in PRO1 had milder (P < 0.05) diarrhea on d 2 and 3 PI compared with pigs in CON. However, no differences were observed in growth performance and diarrhea score between PRO2 (Bacillus pumilus DSM 32539) and CON groups. Supplementation of PRO1 decreased (P < 0.05) lymphocyte counts on d 7 and 14 PI, compared with CON. Supplementation of PRO1 and PRO2 both reduced (P < 0.05) total coliforms in mesenteric lymph nodes on d 21 PI. Pigs in PRO2 had greater (P < 0.05) goblet cell number and sulfomucin percentage in duodenal villi and greater (P < 0.05) sialomucin percentage in jejunal villi than pigs in CON. Supplementation of PRO1 up-regulated (P < 0.05) MUC2 gene expression in jejunal mucosa and reduced (P < 0.05) PTGS-2 and IL1B gene expression in ileal mucosa on d 21 PI, compared with CON. Pigs in PRO1 had reduced (P < 0.05) relative abundance of families Lachnospiraceae, Peptostreptococcaceae and Pasteurellaceae in the ileum. Conclusions Supplementation of Bacillus subtilis DSM 32540 improved growth performance, alleviated diarrhea severity, enhanced gut health, and reduced systemic inflammation of weaned pigs infected with ETEC F18. Although Bacillus pumilus DSM 32539 was able to alleviate systemic inflammation, it had limited impacts on growth performance and severity of diarrhea of ETEC F18 challenged weaned pigs.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 208-208
Author(s):  
Yijie He ◽  
Kwangwook Kim ◽  
Cynthia Jinno ◽  
Xunde Li ◽  
Yanhong Liu

Abstract This experiment aimed to investigate the effects of dietary supplementation of Bacillus subtilis probiotics on metabolites in the intestines of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (E. coli). Forty-eight weaned pigs (6.17 ± 0.36 kg BW) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox or 500 mg/kg of Bacillus subtilis probiotics. The experiment lasted 28 days with 7 days before and 21 days after the first E. coli inoculation. The F18 E. coli were given to pigs at 1010 CFU/3 mL dose for three consecutive days. At the end of the experiment, all pigs were euthanized to collect ileal mucosa and colon digesta for the analysis of metabolomic profiles by gas chromatography time of flight-mass spectrometer (GCTOF-MS). All data were analyzed by an online MetaboAnalyst tool (https://www.metaboanalyst.ca/). Statistical significance was declared at P &lt; 0.05 and the false discovery rate–adjusted P value (q value) &lt; 0.20. A total of 282 (141 identified and 121 unidentified) and 196 (127 identified and 69 unidentified) metabolites were detected in ileal mucosa and colon digesta, respectively. Forty-nine identified metabolites in ileal mucosa significantly differed among experimental groups (P &lt; 0.05; q &lt; 0.20). The most impacted metabolic pathways were galactose metabolism, aspartate and glutamate metabolism, fructose and mannose degradation, pentose phosphate pathway, and urea cycle. However, in colon digesta, only 7 identified metabolites differed among experimental groups (P &lt; 0.05; q &lt; 0.20) and the majority of them were involved in purine metabolism. Results of metabolomics indicated that supplementation of Bacillus subtilis or antibiotics altered metabolites in the intestines of weaned pigs. In particular, more treatment impacts were observed in the metabolite profiles in ileal mucosa compared with colon digesta.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 76-77
Author(s):  
Kwangwook Kim ◽  
Yijie He ◽  
Xia Xiong ◽  
Amy Ehrlich ◽  
Xunde Li ◽  
...  

Abstract There is growing evidence to support the beneficial effects of supplementing direct-fed microbials (DFM) on performance, health status, and immune responses of weaned pigs. Therefore, the objective of this study was to investigate dietary supplementation of Bacillus subtilis (DSM 25841) on growth performance, diarrhea, gut permeability, immunity and metabolomic profiles of weaned pigs experimentally infected with a pathogenic F18 Escherichia coli (E. coli). E. coli infection reduced (P &lt; 0.05) growth performance and intestinal villi height, whereas increased (P &lt; 0.05) diarrhea and permeability in the jejunum compared with non-challenged control. Supplementation of Bacillus subtilis linearly enhanced average daily gain of E. coli infected pigs (d 0 to 5 post-inoculation (PI), P &lt; 0.05; d 0 to 11 PI, P = 0.058). Inclusion of high dose Bacillus subtilis reduced (P &lt; 0.05) jejunal permeability on d 5 and d 11 PI compared with the E. coli challenged control. E. coli challenged control pigs up-regulated (P &lt; 0.05) the mRNA expression of SLC5A10 and MUC2 on d 5 PI, but down-regulated (P &lt; 0.05) expression of SLC5A10, MUC2, and CLDN1 on d 11 PI in jejunal mucosa. Supplementation of Bacillus subtilis linearly up-regulated (P &lt; 0.05) the mRNA expression of CFTR and ZO1 on d 5 PI and SLC5A10 and MUC2 on d 11 PI in jejunal mucosa of E. coli infected pigs. E. coli infection increased (P &lt; 0.05) the mRNA expression of several immune genes in the ileal mucosa, while inclusion of Bacillus subtilis linearly down-regulated gene expression of IL1A on d 5 PI (P = 0.07) and IL6 on d 11 PI (P &lt; 0.05) in ileal mucosa of E. coli infected pigs. Supplementation of Bacillus subtilis modified (Fold change &gt; 1.5; FDR &lt; 0.20) metabolomic profiles in colon digesta, related to pathogenesis and amino acid metabolism. In conclusion, supplementation of Bacillus subtilis enhanced growth rate, improved gut health, and modified metabolomic profiles of weaned pigs experimentally infected with a pathogenic E. coli.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 286-286
Author(s):  
Kwangwook Kim ◽  
Sungbong Jang ◽  
Yanhong Liu

Abstract Our previous studies have shown that supplementation of low-dose antibiotic growth promoter (AGP) exacerbated growth performance and systemic inflammation of weaned pigs infected with pathogenic Escherichia coli (E. coli). The objective of this experiment, which is extension of our previous report, was to investigate the effect of low-dose AGP on gene expression in ileal mucosa of weaned pigs experimentally infected with F18 E. coli. Thirty-four pigs (6.88 ± 1.03 kg BW) were individually housed in disease containment rooms and randomly allotted to one of three treatments (9 to 13 pigs/treatment). The three dietary treatments were control diet (control), and 2 additional diets supplemented with 0.5 or 50 mg/kg of AGP (carbadox), respectively. The experiment lasted 18 d [7 d before and 11 d after first inoculation (d 0)]. The F18 E. coli inoculum was orally provided to all pigs with the dose of 1010 cfu/3 mL for 3 consecutive days. Total RNA [4 to 6 pigs/treatment on d 5; 5 to 7 pigs/treatment on 11 post-inoculation (PI)] was extracted from ileal mucosa to analyze gene expression profiles by Batch-Tag-Seq. The modulated differential gene expression were defined by 1.5-fold difference and a cutoff of P &lt; 0.05 using limma-voom package. All processed data were statistically analyzed and evaluated by PANTHER classification system to determine the biological process function of genes in these lists. Compared to control, supplementation of recommended-dose AGP down-regulated genes related to inflammatory responses on d 5 and 11 PI; whereas, feeding low-dose AGP up-regulated genes associated with negative regulation of metabolic process on d 5, but down-regulated the genes related to immune responses on d 11 PI. The present observations support adverse effects of low-dose AGP in our previous study, indicated by exacerbated the detrimental effects of E. coli infection on pigs’ growth rate, diarrhea and systemic inflammation.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 90-90
Author(s):  
Kwangwook Kim ◽  
Yijie He ◽  
Cynthia Jinno ◽  
Seijoo Yang ◽  
Xunde Li ◽  
...  

Abstract The objective of this experiment was to investigate dietary supplementation of oligosaccharide-based polymer on growth performance, diarrhea, and fecal β-hemolytic coliforms of weaned pigs experimentally infected with a pathogenic F18 Escherichia coli (E. coli). Forty-eight pigs (7.23 ± 1.11 kg BW) were individually housed in disease containment rooms and randomly allotted to one of four treatments with 12 replicate pigs per treatment. The four dietary treatments were a nursery basal diet (control), and 3 additional diets supplemented with 50 mg/kg Mecadox (AGP), 10 or 20 mg/kg of oligosaccharide-based polymer. The experiment lasted 18 d [7 d before and 11 d after the first inoculation (d 0)]. The doses of F18 E. coli inoculum were 1010 cfu/3 mL oral dose daily for 3 days. Growth performance was measured on d -7 to 0 before inoculation, and d 0 to 5 and 5 to 11 post-inoculation (PI). Diarrhea score (DS; 1, normal, to 5, watery diarrhea) was daily recorded for each pig. Fecal samples were collected on d 2, 5, 8, and 11 PI to test the percentage of β-hemolytic coliforms in total coliforms. All data were analyzed by ANOVA using the PROC MIXED of SAS with pig as the experimental unit. Inclusion of oligosaccharide-based polymer linearly increased (P &lt; 0.05) ADFI on d 0 to 5 PI, and feed efficiency on d 0 to 5 PI and d 5 to 11 PI (P = 0.07), compared with the control. Supplementation of AGP or oligosaccharide-based polymer reduced (P &lt; 0.01) frequency of diarrhea of pigs from d 0 to 11 PI. No differences were observed in overall growth performance and percentage of fecal β-hemolytic coliforms on d 8 PI among pigs in AGP and oligosaccharide-based polymer treatments. In conclusion, supplementation of oligosaccharide-based polymer enhanced feed efficiency and reduced diarrhea of weaned pigs infected with a pathogenic E. coli.


2017 ◽  
Vol 83 (10) ◽  
Author(s):  
Gabrielle M. Grandchamp ◽  
Lews Caro ◽  
Elizabeth A. Shank

ABSTRACT In microbial communities, bacteria chemically and physically interact with one another. Some of these interactions are mediated by secreted specialized metabolites that act as either intraspecies or interspecies signals to alter gene expression and to change cell physiology. Bacillus subtilis is a well-characterized soil microbe that can differentiate into multiple cell types, including metabolically dormant endospores. We were interested in identifying microbial interactions that affected sporulation in B. subtilis. Using a fluorescent transcriptional reporter, we observed that coculturing B. subtilis with Escherichia coli promoted sporulation gene expression via a secreted metabolite. To identify the active compound, we screened the E. coli Keio Collection and identified the sporulation-accelerating cue as the siderophore enterobactin. B. subtilis has multiple iron acquisition systems that are used to take up the B. subtilis-produced siderophore bacillibactin, as well as to pirate exogenous siderophores such as enterobactin. While B. subtilis uses a single substrate binding protein (FeuA) to take up both bacillibactin and enterobactin, we discovered that it requires two distinct genes to sporulate in response to these siderophores (the esterase gene besA for bacillibactin and a putative esterase gene, ybbA, for enterobactin). In addition, we found that siderophores from a variety of other microbial species also promote sporulation in B. subtilis. Our results thus demonstrate that siderophores can act not only as bacterial iron acquisition systems but also as interspecies cues that alter cellular development and accelerate sporulation in B. subtilis. IMPORTANCE While much is known about the genetic regulation of Bacillus subtilis sporulation, little is understood about how other bacteria influence this process. This work describes an interaction between Escherichia coli and B. subtilis that accelerates sporulation in B. subtilis. The interaction is mediated by the E. coli siderophore enterobactin; we show that other species' siderophores also promote sporulation gene expression in B. subtilis. These results suggest that siderophores not only may supply bacteria with the mineral nutrient iron but also may play a role in bacterial interspecies signaling, providing a cue for sporulation. Siderophores are produced by many bacterial species and thus potentially play important roles in altering bacterial cell physiology in diverse environments.


Sign in / Sign up

Export Citation Format

Share Document