Differential Expression of Cow Innate and Adaptive Responses Genes in Response to Eugenol

2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 31-32
Author(s):  
Mulumebet worku ◽  
Bahrath Kumar ◽  
Hamid Ismail

Abstract Dietary phytochemicals have both nutritional and health benefits for farm animals. Research on the immunomodulatory effects of phytochemicals may aid in developing novel therapeutic agents and provide insights into the regulation of gene expression. Eugenol (4-allyl-2-methoxyphenyl) is the active ingredient in clove oil that has been studied for its immunomodulatory/anti-inflammatory effects. The objective of this study was to evaluate the effect of eugenol on the expression of genes associated with the cow’s innate and adaptive immune responses. Blood was collected from (n = 3) clinically healthy Holstein-Friesian cows from the North Carolina A&T State University Dairy Unit. One milliliter of whole blood from three cows was treated individually with 10 ng/mL of Eugenol (Sigma-Aldrich St. Louis, MO), or maintained in PBS, incubated at 37ºC for 30 minutes. Total RNA was extracted, reverse transcribed, and real-time PCR was carried out using the RT2 Profiler™ human Innate & Adaptive Immune Responses PCR Array containing 84 genes, as recommended by the manufacturer (Qiagen). The Livak method was used to calculate fold change (FC >2 considered significant). The analysis showed that 25 genes out of 84 genes were affected by treatment with eugenol. Among 25 genes, 19 were upregulated, and 2 genes were downregulated. The highest up-regulated and down-regulated genes following exposure to eugenol was IL23A and Interferon Regulatory Factor 7 (IRF7), respectively. The upregulation of the IL-23A gene expression by exogenous eugenol may be important in the production of pro-inflammatory cytokines and warrants further studies to investigate the mechanism involved. Interferon Regulatory Factor 7 is a critical regulator of type I interferon production and plays an important role in innate immune responses. The observed transcriptional expression of IL23A and IRF7 by eugenol provides an insight into immune modulation in cow blood.

2014 ◽  
Vol 71 (20) ◽  
pp. 3873-3883 ◽  
Author(s):  
Laure Ysebrant de Lendonck ◽  
Valerie Martinet ◽  
Stanislas Goriely

2021 ◽  
Vol 12 ◽  
Author(s):  
Yalan Lai ◽  
Xiaoyan Xia ◽  
Anchun Cheng ◽  
Mingshu Wang ◽  
Xumin Ou ◽  
...  

Duck hepatitis A virus (DHAV), which mainly infects 1- to 4-week-old ducklings, has a fatality rate of 95% and poses a huge economic threat to the duck industry. However, the mechanism by which DHAV-1 regulates the immune response of host cells is rarely reported. This study examined whether DHAV-1 contains a viral protein that can regulate the innate immunity of host cells and its specific regulatory mechanism, further exploring the mechanism by which DHAV-1 resists the host immune response. In the study, the dual-luciferase reporter gene system was used to screen the viral protein that regulates the host innate immunity and the target of this viral protein. The results indicate that the DHAV-1 3C protein inhibits the pathway upstream of interferon (IFN)-β by targeting the interferon regulatory factor 7 (IRF7) protein. In addition, we found that the 3C protein inhibits the nuclear translocation of the IRF7 protein. Further experiments showed that the 3C protein interacts with the IRF7 protein through its N-terminus and that the 3C protein degrades the IRF7 protein in a caspase 3-dependent manner, thereby inhibiting the IFN-β-mediated antiviral response to promote the replication of DHAV-1. The results of this study are expected to serve as a reference for elucidating the mechanisms of DHAV-1 infection and pathogenicity.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Carol L. Vinton ◽  
Samuel J. Magaziner ◽  
Kimberly A. Dowd ◽  
Shelly J. Robertson ◽  
Emerito Amaro-Carambot ◽  
...  

ABSTRACT Flaviviruses are controlled by adaptive immune responses but are exquisitely sensitive to interferon-stimulated genes (ISGs). How coinfections, particularly simian immunodeficiency viruses (SIVs), that induce robust ISG signatures influence flavivirus clearance and pathogenesis is unclear. Here, we studied how Zika virus (ZIKV) infection is modulated in SIV-infected nonhuman primates. We measured ZIKV replication, cellular ZIKV RNA levels, and immune responses in non-SIV-infected and SIV-infected rhesus macaques (RMs), which we infected with ZIKV. Coinfected animals had a 1- to 2-day delay in peak ZIKV viremia, which was 30% of that in non-SIV-infected animals. However, ZIKV viremia was significantly prolonged in SIV-positive (SIV+) RMs. ISG levels at the time of ZIKV infection were predictive for lower ZIKV viremia in the SIV+ RMs, while prolonged ZIKV viremia was associated with muted and delayed adaptive responses in SIV+ RMs. IMPORTANCE Immunocompromised individuals often become symptomatic with infections which are normally fairly asymptomatic in healthy individuals. The particular mechanisms that underlie susceptibility to coinfections in human immunodeficiency virus (HIV)-infected individuals are multifaceted. ZIKV and other flaviviruses are sensitive to neutralizing antibodies, whose production can be limited in HIV-infected individuals but are also sensitive to type I interferons, which are expressed at high levels in HIV-infected individuals. Data in this study highlight how individual components of the innate and adaptive immune responses which become perturbed in HIV-infected individuals influence ZIKV infection.


1998 ◽  
Vol 273 (5) ◽  
pp. 2714-2720 ◽  
Author(s):  
Susan L. Schafer ◽  
Rongtuan Lin ◽  
Paul A. Moore ◽  
John Hiscott ◽  
Paula M. Pitha

2010 ◽  
Vol 84 (13) ◽  
pp. 6549-6563 ◽  
Author(s):  
Erin L. Lousberg ◽  
Cara K. Fraser ◽  
Michael G. Tovey ◽  
Kerrilyn R. Diener ◽  
John D. Hayball

ABSTRACT Type I interferons (IFNs) are considered to be important mediators of innate immunity due to their inherent antiviral activity, ability to drive the transcription of a number of genes involved in viral clearance, and their role in the initiation of innate and adaptive immune responses. Due to the central role of type I IFNs, we sought to determine their importance in the generation of immunity to a recombinant vaccine vector fowlpox virus (FPV). In analyzing the role of type I IFNs in immunity to FPV, we show that they are critical to the secretion of a number of innate and proinflammatory cytokines, including type I IFNs themselves as well as interleukin-12 (IL-12), tumor necrosis factor-alpha (TNF-α), IL-6, and IL-1β, and that deficiency leads to enhanced virus-mediated antigen expression. Interestingly, however, type I IFNs were not required for adaptive immune responses to recombinant FPV even though plasmacytoid dendritic cells (pDCs), the primary producers of type I IFNs, have been shown to be requisite for this to occur. Furthermore, we provide evidence that the importance of pDCs may lie in their ability to capture and present virally derived antigen to T cells rather than in their capacity as professional type I IFN-producing cells.


2007 ◽  
Vol 81 (16) ◽  
pp. 8692-8706 ◽  
Author(s):  
Mark J. Cameron ◽  
Longsi Ran ◽  
Luoling Xu ◽  
Ali Danesh ◽  
Jesus F. Bermejo-Martin ◽  
...  

ABSTRACT It is not understood how immune inflammation influences the pathogenesis of severe acute respiratory syndrome (SARS). One area of strong controversy is the role of interferon (IFN) responses in the natural history of SARS. The fact that the majority of SARS patients recover after relatively moderate illness suggests that the prevailing notion of deficient type I IFN-mediated immunity, with hypercytokinemia driving a poor clinical course, is oversimplified. We used proteomic and genomic technology to systematically analyze host innate and adaptive immune responses of 40 clinically well-described patients with SARS during discrete phases of illness from the onset of symptoms to discharge or a fatal outcome. A novel signature of high IFN-α, IFN-γ, and IFN-stimulated chemokine levels, plus robust antiviral IFN-stimulated gene (ISG) expression, accompanied early SARS sequelae. As acute illness progressed, SARS patients entered a crisis phase linked to oxygen saturation profiles. The majority of SARS patients resolved IFN responses at crisis and expressed adaptive immune genes. In contrast, patients with poor outcomes showed deviated ISG and immunoglobulin gene expression levels, persistent chemokine levels, and deficient anti-SARS spike antibody production. We contend that unregulated IFN responses during acute-phase SARS may culminate in a malfunction of the switch from innate immunity to adaptive immunity. The potential for the use of the gene signatures we describe in this study to better assess the immunopathology and clinical management of severe viral infections, such as SARS and avian influenza (H5N1), is therefore worth careful examination.


2019 ◽  
Vol 78 (11) ◽  
pp. 1583-1591 ◽  
Author(s):  
Minghua Wu ◽  
Brian Skaug ◽  
Xiongjie Bi ◽  
Tingting Mills ◽  
Gloria Salazar ◽  
...  

ObjectivesThere is considerable evidence that implicates dysregulation of type I interferon signalling (or type I IFN signature) in the pathogenesis of systemic sclerosis (SSc). Interferon regulatory factor 7 (IRF7) has been recognised as a master regulator of type I IFN signalling. The objective of this study was to elucidate the role of IRF7 in dermal fibrosis and SSc pathogenesis.MethodsSSc and healthy control skin biopsies were investigated to determine IRF7 expression and activation. The role of IRF7 in fibrosis was investigated using IRF7 knockout (KO) mice in the bleomycin-induced and TSK/+mouse models. In vitro experiments with dermal fibroblasts from patients with SSc and healthy controls were performed.ResultsIRF7 expression was significantly upregulated and activated in SSc skin tissue and explanted SSc dermal fibroblasts compared with unaffected, matched controls. Moreover, IRF7 expression was stimulated by IFN-α in dermal fibroblasts. Importantly, IRF7 co-immunoprecipitated with Smad3, a key mediator of transforming growth factor (TGF)-β signalling, and IRF7 knockdown reduced profibrotic factors in SSc fibroblasts. IRF7 KO mice demonstrated attenuated dermal fibrosis and inflammation compared with wild-type mice in response to bleomycin. Specifically, hydroxyproline content, dermal thickness as well as Col1a2, ACTA2 and interleukin-6 mRNA levels were significantly attenuated in IRF7 KO mice skin tissue. Furthermore, IRF7 KO in TSK/+mice attenuated hydroxyproline content, subcutaneous hypodermal thickness, Col1a2 mRNA as well as α-smooth muscle actin and fibronectin expression.ConclusionsIRF7 is upregulated in SSc skin, interacts with Smad3 and potentiates TGF-β-mediated fibrosis, and therefore may represent a promising therapeutic target in SSc.


Sign in / Sign up

Export Citation Format

Share Document