Overview. Type I interferons as primers, activators and inhibitors of innate and adaptive immune responses

2012 ◽  
Vol 90 (5) ◽  
pp. 471-473 ◽  
Author(s):  
Paul J Hertzog
mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Carol L. Vinton ◽  
Samuel J. Magaziner ◽  
Kimberly A. Dowd ◽  
Shelly J. Robertson ◽  
Emerito Amaro-Carambot ◽  
...  

ABSTRACT Flaviviruses are controlled by adaptive immune responses but are exquisitely sensitive to interferon-stimulated genes (ISGs). How coinfections, particularly simian immunodeficiency viruses (SIVs), that induce robust ISG signatures influence flavivirus clearance and pathogenesis is unclear. Here, we studied how Zika virus (ZIKV) infection is modulated in SIV-infected nonhuman primates. We measured ZIKV replication, cellular ZIKV RNA levels, and immune responses in non-SIV-infected and SIV-infected rhesus macaques (RMs), which we infected with ZIKV. Coinfected animals had a 1- to 2-day delay in peak ZIKV viremia, which was 30% of that in non-SIV-infected animals. However, ZIKV viremia was significantly prolonged in SIV-positive (SIV+) RMs. ISG levels at the time of ZIKV infection were predictive for lower ZIKV viremia in the SIV+ RMs, while prolonged ZIKV viremia was associated with muted and delayed adaptive responses in SIV+ RMs. IMPORTANCE Immunocompromised individuals often become symptomatic with infections which are normally fairly asymptomatic in healthy individuals. The particular mechanisms that underlie susceptibility to coinfections in human immunodeficiency virus (HIV)-infected individuals are multifaceted. ZIKV and other flaviviruses are sensitive to neutralizing antibodies, whose production can be limited in HIV-infected individuals but are also sensitive to type I interferons, which are expressed at high levels in HIV-infected individuals. Data in this study highlight how individual components of the innate and adaptive immune responses which become perturbed in HIV-infected individuals influence ZIKV infection.


2010 ◽  
Vol 84 (13) ◽  
pp. 6549-6563 ◽  
Author(s):  
Erin L. Lousberg ◽  
Cara K. Fraser ◽  
Michael G. Tovey ◽  
Kerrilyn R. Diener ◽  
John D. Hayball

ABSTRACT Type I interferons (IFNs) are considered to be important mediators of innate immunity due to their inherent antiviral activity, ability to drive the transcription of a number of genes involved in viral clearance, and their role in the initiation of innate and adaptive immune responses. Due to the central role of type I IFNs, we sought to determine their importance in the generation of immunity to a recombinant vaccine vector fowlpox virus (FPV). In analyzing the role of type I IFNs in immunity to FPV, we show that they are critical to the secretion of a number of innate and proinflammatory cytokines, including type I IFNs themselves as well as interleukin-12 (IL-12), tumor necrosis factor-alpha (TNF-α), IL-6, and IL-1β, and that deficiency leads to enhanced virus-mediated antigen expression. Interestingly, however, type I IFNs were not required for adaptive immune responses to recombinant FPV even though plasmacytoid dendritic cells (pDCs), the primary producers of type I IFNs, have been shown to be requisite for this to occur. Furthermore, we provide evidence that the importance of pDCs may lie in their ability to capture and present virally derived antigen to T cells rather than in their capacity as professional type I IFN-producing cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Haruna Okude ◽  
Daisuke Ori ◽  
Taro Kawai

Recognition of pathogen-derived nucleic acids by pattern-recognition receptors (PRRs) is essential for eliciting antiviral immune responses by inducing the production of type I interferons (IFNs) and proinflammatory cytokines. Such responses are a prerequisite for mounting innate and pathogen-specific adaptive immune responses. However, host cells also use nucleic acids as carriers of genetic information, and the aberrant recognition of self-nucleic acids by PRRs is associated with the onset of autoimmune or autoinflammatory diseases. In this review, we describe the mechanisms of nucleic acid sensing by PRRs, including Toll-like receptors, RIG-I-like receptors, and DNA sensor molecules, and their signaling pathways as well as the disorders caused by uncontrolled or unnecessary activation of these PRRs.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuanyuan Zhu ◽  
Xiang An ◽  
Xiao Zhang ◽  
Yu Qiao ◽  
Tongsen Zheng ◽  
...  

Abstract The aberrant appearance of DNA in the cytoplasm triggers the activation of cGAS-cGAMP-STING signaling and induces the production of type I interferons, which play critical roles in activating both innate and adaptive immune responses. Recently, numerous studies have shown that the activation of STING and the stimulation of type I IFN production are critical for the anticancer immune response. However, emerging evidence suggests that STING also regulates anticancer immunity in a type I IFN-independent manner. For instance, STING has been shown to induce cell death and facilitate the release of cancer cell antigens. Moreover, STING activation has been demonstrated to enhance cancer antigen presentation, contribute to the priming and activation of T cells, facilitate the trafficking and infiltration of T cells into tumors and promote the recognition and killing of cancer cells by T cells. In this review, we focus on STING and the cancer immune response, with particular attention to the roles of STING activation in the cancer-immunity cycle. Additionally, the negative effects of STING activation on the cancer immune response and non-immune roles of STING in cancer have also been discussed.


2007 ◽  
Vol 81 (16) ◽  
pp. 8692-8706 ◽  
Author(s):  
Mark J. Cameron ◽  
Longsi Ran ◽  
Luoling Xu ◽  
Ali Danesh ◽  
Jesus F. Bermejo-Martin ◽  
...  

ABSTRACT It is not understood how immune inflammation influences the pathogenesis of severe acute respiratory syndrome (SARS). One area of strong controversy is the role of interferon (IFN) responses in the natural history of SARS. The fact that the majority of SARS patients recover after relatively moderate illness suggests that the prevailing notion of deficient type I IFN-mediated immunity, with hypercytokinemia driving a poor clinical course, is oversimplified. We used proteomic and genomic technology to systematically analyze host innate and adaptive immune responses of 40 clinically well-described patients with SARS during discrete phases of illness from the onset of symptoms to discharge or a fatal outcome. A novel signature of high IFN-α, IFN-γ, and IFN-stimulated chemokine levels, plus robust antiviral IFN-stimulated gene (ISG) expression, accompanied early SARS sequelae. As acute illness progressed, SARS patients entered a crisis phase linked to oxygen saturation profiles. The majority of SARS patients resolved IFN responses at crisis and expressed adaptive immune genes. In contrast, patients with poor outcomes showed deviated ISG and immunoglobulin gene expression levels, persistent chemokine levels, and deficient anti-SARS spike antibody production. We contend that unregulated IFN responses during acute-phase SARS may culminate in a malfunction of the switch from innate immunity to adaptive immunity. The potential for the use of the gene signatures we describe in this study to better assess the immunopathology and clinical management of severe viral infections, such as SARS and avian influenza (H5N1), is therefore worth careful examination.


Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 22 ◽  
Author(s):  
Beatriz Escudero-Pérez ◽  
César Muñoz-Fontela

Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.


2006 ◽  
Vol 17 (5) ◽  
pp. 307-314 ◽  
Author(s):  
Kenneth L Rosenthal

New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs) to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs) are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as 'innate immunologicals') can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines.


2007 ◽  
Vol 178 (10) ◽  
pp. 6653.1-6653 ◽  
Author(s):  
S. Hervas-Stubbs ◽  
P. Rueda ◽  
L. Lopez ◽  
C. Leclerc

2021 ◽  
Vol 12 ◽  
Author(s):  
Loïc Vivien Bocard ◽  
Andrew Robert Kick ◽  
Corinne Hug ◽  
Heidi Erika Lisa Lischer ◽  
Tobias Käser ◽  
...  

This study was initiated to better understand the nature of innate immune responses and the relatively weak and delayed immune response against porcine reproductive and respiratory syndrome virus (PRRSV). Following modified live virus (MLV) vaccination or infection with two PRRSV-2 strains, we analyzed the transcriptome of peripheral blood mononuclear cells collected before and at three and seven days after vaccination or infection. We used blood transcriptional modules (BTMs)-based gene set enrichment analyses. BTMs related to innate immune processes were upregulated by PRRSV-2 strains but downregulated by MLV. In contrast, BTMs related to adaptive immune responses, in particular T cells and cell cycle, were downregulated by PRRSV-2 but upregulated by MLV. In addition, we found differences between the PRRSV strains. Only the more virulent strain induced a strong platelet activation, dendritic cell activation, interferon type I and plasma cell responses. We also calculated the correlations of BTM with the neutralizing antibody and the T-cell responses. Early downregulation (day 0–3) of dendritic cell and B-cell BTM correlated to both CD4 and CD8 T-cell responses. Furthermore, a late (day 3–7) upregulation of interferon type I modules strongly correlated to helper and regulatory T-cell responses, while inflammatory BTM upregulation correlated more to CD8 T-cell responses. BTM related to T cells had positive correlations at three days but negative associations at seven days post-infection. Taken together, this work contributes to resolve the complexity of the innate and adaptive immune responses against PRRSV and indicates a fundamentally different immune response to the less immunogenic MLV compared to field strains which induced robust adaptive immune responses. The identified correlates of T-cell responses will facilitate a rational approach to improve the immunogenicity of MLV.


2015 ◽  
Vol 16 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Thomas R. Hansen ◽  
Natalia P. Smirnova ◽  
Brett T. Webb ◽  
Helle Bielefeldt-Ohmann ◽  
Randy E. Sacco ◽  
...  

AbstractInfection of pregnant cows with noncytopathic (ncp) bovine viral diarrhea virus (BVDV) induces rapid innate and adaptive immune responses, resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent infection with ncpBVDV in the fetus has been attributed to the inability to mount an immune response before 90–150 days of gestational age. The result is ‘immune tolerance’, persistent viral replication and shedding of ncpBVDV. In contrast, we describe the chronic upregulation of fetal Type I interferon (IFN) pathway genes and the induction of IFN-γ pathways in fetuses of cows infected on day 75 of gestation. Persistently infected (PI) fetal IFN-γ concentrations also increased at day 97 at the peak of fetal viremia and IFN-γ mRNA was significantly elevated in fetal thymus, liver and spleen 14–22 days post maternal inoculation. PI fetuses respond to ncpBVDV infection through induction of Type I IFN and IFN-γ activated genes leading to a reduction in ncpBVDV titer. We hypothesize that fetal infection with BVDV persists because of impaired induction of IFN-γ in the face of activated Type I IFN responses. Clarification of the mechanisms involved in the IFN-associated pathways during BVDV fetal infection may lead to better detection methods, antiviral compounds and selection of genetically resistant breeding animals.


Sign in / Sign up

Export Citation Format

Share Document