scholarly journals 257 Effects of feeding different levels of quebracho (Schinopsis balansae) extract in a high-roughage total mixed ration on seasonal manure gas emissions

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 93-94
Author(s):  
Aaron B Norris ◽  
Luis O Tedeschi ◽  
Jamie L Foster ◽  
James P Muir ◽  
Bill E Pinchak

Abstract Our objective was to investigate how quebracho tannin (QT; Schinopsis balansae) fed at differing rates within a roughage-based diet affected manure gas emissions of growing steers. The utilization of ruminant species is required for efficient production of human-edible protein to meet global nutrient demands. However, gaseous byproducts from ruminant production systems, such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are deleterious to the environment. It is estimated that CO2, CH4, and N2O from managed waste and grazed lands account for roughly 54% of emissions from the livestock sector within the United States, with approximately 80% being associated with beef and dairy cattle. Supplementation of condensed tannins is a plausible method for improving environmental efficiency through the mitigation of enteric CH4 and shifting route of N excretion. During two experimental periods, 12 crossbred steers (236 ± 16 kg) were fed a roughage-based diet at maintenance level with the addition of QT at 0, 1.5, 3, and 4.5% of DM serving as dietary treatments. Following adaptation, feces were collected and gas fluxes measured using vented static chamber technique with manure incubated on the soil surface at two locations, College Station and Stephenville, during two periods corresponding to winter and spring. The daily flux of CO2 was influenced by soil moisture and temperature (r = 0.34; P < 0.01), whereas CH4 and N2O were associated with soil moisture. Cumulative CO2 and gross CO2 equivalent (CO2e) exhibited a dietary treatment effect at College Station (P ≤ 0.01), with a linear reduction with increased dietary QT. At both locations, we observed significance or tendencies for period effects for CO2, CH4, N2O, and CO2e (P ≤ 0.07) with period 2 having higher gas production. Within certain environments, QT supplementation could potentially reduce manure gas emissions, but additional investigation into animal variation is required.

2018 ◽  
Vol 96 (suppl_1) ◽  
pp. 19-20
Author(s):  
A B Norris ◽  
L O Tedeschi ◽  
K D Casey ◽  
J C B Dubeux ◽  
J L Foster ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Xiaodong Huang ◽  
Beth Ziniti ◽  
Michael H. Cosh ◽  
Michele Reba ◽  
Jinfei Wang ◽  
...  

Soil moisture is a key indicator to assess cropland drought and irrigation status as well as forecast production. Compared with the optical data which are obscured by the crop canopy cover, the Synthetic Aperture Radar (SAR) is an efficient tool to detect the surface soil moisture under the vegetation cover due to its strong penetration capability. This paper studies the soil moisture retrieval using the L-band polarimetric Phased Array-type L-band SAR 2 (PALSAR-2) data acquired over the study region in Arkansas in the United States. Both two-component model-based decomposition (SAR data alone) and machine learning (SAR + optical indices) methods are tested and compared in this paper. Validation using independent ground measurement shows that the both methods achieved a Root Mean Square Error (RMSE) of less than 10 (vol.%), while the machine learning methods outperform the model-based decomposition, achieving an RMSE of 7.70 (vol.%) and R2 of 0.60.


2021 ◽  
Vol 13 (8) ◽  
pp. 1463
Author(s):  
Susan C. Steele-Dunne ◽  
Sebastian Hahn ◽  
Wolfgang Wagner ◽  
Mariette Vreugdenhil

The TU Wien Soil Moisture Retrieval (TUW SMR) approach is used to produce several operational soil moisture products from the Advanced Scatterometer (ASCAT) on the Metop series of satellites as part of the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The incidence angle dependence of backscatter is described by a second-order Taylor polynomial, the coefficients of which are used to normalize ASCAT observations to the reference incidence angle of 40∘ and for correcting vegetation effects. Recently, a kernel smoother was developed to estimate the coefficients dynamically, in order to account for interannual variability. In this study, we used the kernel smoother for estimating these coefficients, where we distinguished for the first time between their two uses, meaning that we used a short and fixed window width for the backscatter normalisation while we tested different window widths for optimizing the vegetation correction. In particular, we investigated the impact of using the dynamic vegetation parameters on soil moisture retrieval. We compared soil moisture retrievals based on the dynamic vegetation parameters to those estimated using the current operational approach by examining their agreement, in terms of the Pearson correlation coefficient, unbiased RMSE and bias with respect to in situ soil moisture. Data from the United States Climate Research Network were used to study the influence of climate class and land cover type on performance. The sensitivity to the kernel smoother half-width was also investigated. Results show that estimating the vegetation parameters with the kernel smoother can yield an improvement when there is interannual variability in vegetation due to a trend or a change in the amplitude or timing of the seasonal cycle. However, using the kernel smoother introduces high-frequency variability in the dynamic vegetation parameters, particularly for shorter kernel half-widths.


Author(s):  
Pang-Wei Liu ◽  
Rajat Bindlish ◽  
Bin Fang ◽  
Venkat Lakshmi ◽  
Peggy E. O'Neill ◽  
...  

2014 ◽  
Vol 49 (1) ◽  
pp. 641-648 ◽  
Author(s):  
David T. Allen ◽  
David W. Sullivan ◽  
Daniel Zavala-Araiza ◽  
Adam P. Pacsi ◽  
Matthew Harrison ◽  
...  

Soil Research ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 1355 ◽  
Author(s):  
RB Garnsey

Earthworms have the ability to alleviate many soil degradational problems in Australia. An attempt to optimize this resource requires fundamental understanding of earthworm ecology. This study reports the seasonal changes in earthworm populations in the Midlands of Tasmania (<600 mm rainfall p.a.), and examines, for the first time in Australia, the behaviour and survival rates of aestivating earthworms. Earthworms were sampled from 14 permanent pastures in the Midlands from May 1992 to February 1994. Earthworm activity was significantly correlated with soil moisture; maximum earthworm activity in the surface soil was evident during the wetter months of winter and early spring, followed by aestivation in the surface and subsoils during the drier summer months. The two most abundant earthworm species found in the Midlands were Aporrectodea caliginosa (maximum of 174.8 m-2 or 55.06 g m-2) and A. trapezoides (86 m-2 or 52.03 g m-2), with low numbers of Octolasion cyaneum, Lumbricus rubellus and A. rosea. The phenology of A. caliginosa relating to rainfall contrasted with that of A. trapezoides in this study. A caliginosa was particularly dependent upon rainfall in the Midlands: population density, cocoon production and adult development of A. caliginosa were reduced as rainfall reduced from 600 to 425 mm p.a. In contrast, the density and biomass of A. trapezoides were unaffected by rainfall over the same range: cocoon production and adult development continued regardless of rainfall. The depth of earthworm aestivation during the summers of 1992-94 was similar in each year. Most individuals were in aestivation at a depth of 150-200 mm, regardless of species, soil moisture or texture. Smaller aestivating individuals were located nearer the soil surface, as was shown by an increase in mean mass of aestivating individuals with depth. There was a high mortality associated with summer aestivation of up to 60% for juvenile, and 63% for adult earthworms in 1993 in the Midlands. Cocoons did not survive during the summers of 1992 or 1994, but were recovered in 1993, possibly due to the influence of rainfall during late winter and early spring.


2008 ◽  
Vol 88 (5) ◽  
pp. 761-774 ◽  
Author(s):  
J. A. P. Pollacco

Hydrological models require the determination of fitting parameters that are tedious and time consuming to acquire. A rapid alternative method of estimating the fitting parameters is to use pedotransfer functions. This paper proposes a reliable method to estimate soil moisture at -33 and -1500 kPa from soil texture and bulk density. This method reduces the saturated moisture content by multiplying it with two non-linear functions depending on sand and clay contents. The novel pedotransfer function has no restrictions on the range of the texture predictors and gives reasonable predictions for soils with bulk density that varies from 0.25 to 2.16 g cm-3. These pedotransfer functions require only five parameters for each pressure head. It is generally accepted that the introduction of organic matter as a predictor improves the outcomes; however it was found by using a porosity based pedotransfer model, using organic matter as a predictor only modestly improves the accuracy. The model was developed employing 18 559 samples from the IGBP-DIS soil data set for pedotransfer function development (Data and Information System of the International Geosphere Biosphere Programme) database that embodies all major soils across the United States of America. The function is reliable and performs well for a wide range of soils occurring in very dry to very wet climates. Climatical grouping of the IGBP-DIS soils was proposed (aquic, tropical, cryic, aridic), but the results show that only tropical soils require specific grouping. Among many other different non-climatical soil groups tested, only humic and vitric soils were found to require specific grouping. The reliability of the pedotransfer function was further demonstrated with an independent database from Northern Italy having heterogeneous soils, and was found to be comparable or better than the accuracy of other pedotransfer functions found in the literature. Key words: Pedotransfer functions, soil moisture, soil texture, bulk density, organic matter, grouping


Sign in / Sign up

Export Citation Format

Share Document