657 Preliminary Study on the Effect of Various Antimicrobial Formulations Containing Silver Oxynitrate on Reducing Pseudomonas Aeruginosa Using an in-vivo Porcine Burn Wound Model

2020 ◽  
Vol 41 (Supplement_1) ◽  
pp. S174-S174
Author(s):  
Stephen C Davis ◽  
Joel Gil ◽  
Michael Solis ◽  
Alex Higa

Abstract Introduction Silver has long been known for its antimicrobial effects and has been commonly applied topically to burn wounds for years. More recently, wound dressings compounded with silver ions, have been developed to prevent and treat wound infection in both burn and chronic wounds. Methods This preliminary study evaluates the effect of a proprietary silver oxynitrate creams on Pseudomonas aeruginosa (PA) biofilms using a well-established burn wound porcine model model. Swine were used due to their skins similarities to humans and response to wound treatments. Briefly, second degree burn wounds were created and inoculated with PA. Wounds were then covered for 24 hours with a polyurethane dressing to allow for biofilm formation. The polyurethane dressing was removed and wounds were randomly assigned to one of the following treatment groups: 1) silver oxynitrate cream 0%, 2) silver oxynitrate cream 4%, 3) silver oxynitrate cream 7%, 4) silver oxynitrate cream * 10%, 5) silver oxynitrate powder, 6) silver sulfadiazine cream (SSD)~, or 7) untreated control. All treatments groups were covered with a polyurethane dressing to prevent any cross contamination. On days 3 and 7 after wounding wounds were cultured using an established scrub technique. Results Silver oxynitrate powder was the most effective treatment group at reducing PA counts. Silver oxynitrate 10% formulation had a high percentage of bacterial reduction. On day 7, compared to untreated control the silver oxynitrate 4, 7 and 10% treatments showed a 3.45, 4.05, and 4.30 log CFU/ml reduction, respectively. Conclusions These studies suggest that the silver oxynitrate formulations can reduce the bacterial bioburden in vivo against wounds that have PA biofilms. Additional animals are needed to substantiate these findings. Applicability of Research to Practice Gram-negative bacteria such as PA pose a challenge for wound care practitioners and new effective therapies are needed.

2019 ◽  
Author(s):  
S.C. Davis ◽  
M. Solis ◽  
J. Gil ◽  
J. Valdes ◽  
A. Higa ◽  
...  

AbstractSilver has been incorporated into a variety of wound dressings and topical agents to prevent and combat wound infections. Pseudomonas aeruginosa is a common cause of burn wound infections and well-known biofilm producer. The objective of this study was to evaluate the effects of a panel of wound dressings containing different silver formulations on P. aeruginosa biofilms using an in vivo porcine burn wound model. Second-degree burns were created on the skin of specific pathogen-free pigs (n = 3) and inoculated with 2.14 × 105 cfu P. aeruginosa per wound. Biofilms were allowed to develop for 24 h, and then each wound was treated with one of 6 treatments: silver oxynitrate dressing (OXY), silver oxynitrate powder (POWD), nanocrystalline silver dressing (NANO), silver chloride dressing (AGCL), silver sulfadiazine (SSD), or a negative control polyurethane film with no silver-based formulation (NEG). Wounds were cultured at D3 post-infection (n = 3 per pig per treatment) and at D6 post-infection (n = 3 per pig per treatment) for quantification of bacteria. On D6, biopsies (n = 3 per treatment) were taken from POWD, SSD, and NEG wounds and wound healing progress was evaluated histologically. At the time of treatment initiation, 24 h post-infection, 8.71 log cfu P. aeruginosa were present in burn wounds. On D3 and D6, all treatments significantly reduced bacterial counts in wounds as compared to NEG, but POWD caused an approximately 7-log reduction in bacterial counts on both days and was the only treatment to reduce the bacterial counts to below the threshold for detecting bacteria. The OXY, NANO, and SSD treatments had similar reductions in bacterial recovery on D3 and D6 of approximately 2.5-4 log. The histological healing metrics of reepithelialization percentage, epithelial thickness, white cell infiltration, angiogenesis, and granulation tissue formation were similar among wounds from POWD, SSD, and NEG groups at 6 days post-infection. Silver oxynitrate powder reduced P. aeruginosa growth in burn wounds more effectively than other silver-based dressings but did not impact wound healing.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S140-S140
Author(s):  
Ekta Vohra

Abstract Introduction Certified wound care nurses perform a vital role in skin health and management in the hospital setting. During the certification process, minimal time is spent on burn wound education, despite the fact that wound care nurses are consulted for various wound etiologies; one of those being burns. This construct created a need for collaboration between the burn team and wound care nurses. Although all burns are essentially wounds, the reality is that all wounds are not burns. The management of the burn wound is often different from the management of pressure injuries or surgical wounds. In speaking with the wound care nurses at this large urban academic medical center, a knowledge gap was identified in burn wound care education as well as appropriate and timely consultation of the burn team. Methods This knowledge improvement project focused on educating the wound care nurses in assessment and treatment of burns, and the process for burn service consultation. Burn education was provided through in-person didactic presentations. The lecture included burn wound photos with opportunities to classify the potential depth of burn wounds as well as typical complications. Additionally, it discussed when a burn consult is needed. A basic knowledge retrospective pre-posttest method was utilized. Results An educational plan was tailored to meet the learning needs of the wound care nurses to address the knowledge gap. Post test data results were tracked. Post scores were increased, indicating a successful educational intervention. Also, while providing the education, the burn outreach coordinator identified an opportunity to expand the burn center’s presence among colleagues through collaboration with the wound care nurses. The wound nurses made excellent ambassadors for the mission of the burn service. Conclusions Provision of burn education across disciplines may improve recognition of burn wounds and facilitate definitive treatment.


mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Jake Everett ◽  
Keith Turner ◽  
Qiuxian Cai ◽  
Vernita Gordon ◽  
Marvin Whiteley ◽  
...  

ABSTRACT Environmental conditions affect bacterial behavior and can greatly influence the course of an infection. However, the environmental cues that elicit bacterial responses in specific infection sites are relatively unknown. Pseudomonas aeruginosa is ubiquitous in nature and typically innocuous. However, it is also one of the most prevalent causes of fatal sepsis in burn wound patients. The aim of this study was to determine the impact of environmental factors, specifically the availability of arginine, on the pathogenesis of P. aeruginosa in burn wound infections. Comparison of burned versus noninjured tissue revealed that l-arginine (l-Arg) was significantly depleted in burn wounds as a consequence of elevated arginase produced by myeloid-derived suppressor cells. We also observed that l-Arg was a potent chemoattractant for P. aeruginosa, and while low concentrations of l-Arg increased P. aeruginosa’s swimming motility, high concentrations resulted in diminished swimming. Based on these observations, we tested whether the administration of exogenous l-Arg into the burn wound could attenuate the virulence of P. aeruginosa in thermally injured mice. Administration of l-Arg resulted in decreased P. aeruginosa spread and sepsis and increased animal survival. Taken together, these data demonstrate that the availability of environmental arginine greatly influences the virulence of P. aeruginosa in vivo and may represent a promising phenotype-modulating tool for future therapeutic avenues. IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it is critical that alternative strategies to control or prevent septic infections in burn patients be developed in parallel with novel antimicrobial agents. In this study, we observed that administration of l-Arg significantly reduced bacterial spread and sepsis in burned mice infected with P. aeruginosa. Given the safety of l-Arg in high doses and its potential wound-healing benefits, this conditionally essential amino acid may represent a useful tool to modulate bacterial behavior in vivo and prevent sepsis in burn patients. IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it is critical that alternative strategies to control or prevent septic infections in burn patients be developed in parallel with novel antimicrobial agents. In this study, we observed that administration of l-Arg significantly reduced bacterial spread and sepsis in burned mice infected with P. aeruginosa. Given the safety of l-Arg in high doses and its potential wound-healing benefits, this conditionally essential amino acid may represent a useful tool to modulate bacterial behavior in vivo and prevent sepsis in burn patients.


2021 ◽  
Vol 30 (1) ◽  
pp. 19-28
Author(s):  
Yasser M. Ismail ◽  
Sahar M. Fayed ◽  
Fatma M. Elesawy ◽  
Nora Z Abd El-Halim ◽  
Ola S. El-Shimi

Background: The biggest concern for a burn team is a nosocomial infection in burn patients, which is a significant health issue. Pseudomonas aeruginosa is an extremely troublesome drug-resistant bacterium in the world today. We are now faced with rising P. aeruginosa pan-drug-resistant clones in hospital settings. Objectives: To evaluate the distribution of different virulence factors generated by P. aeruginosa isolated from burn wound infections, together with its antimicrobial susceptibility. Methodology: The isolates reported as P. aeruginosa were further tested for the presence of various phenotypic and genotypic virulence factors including (Biofilm formation, lipase, protease, gelatinase, DNase, bile esculin hydrolysis & hemolysin). Also, genes encoding (nan 1 and Exo A) were investigated by PCR using specific primers. All the isolates were tested for their antimicrobial susceptibility patterns. Results: The study reported that toxins and enzymes were expressed by the tested strains in varying proportions; (92.0%) were producing β-hemolysin, lipase (86%), and protease (86%). The formation of biofilm was observed in 84%. Exo A (70%) was the main virulence gene found in the tested strains. Nan 1 gene was identified in 30% of the samples. 82% of MDRPA isolates were found. There is indeed a relationship between biofilm production and drug resistance, as well as the presence of virulence genes (nan 1 and Exo A) were associated with certain patients and burn wounds characteristics as burn size, burn wound depth, length of hospital stays, and socioeconomic status. Conclusions: Correlation of Pseudomonas aeruginosa virulence profiles with burn wounds and patient-related data can be useful in establishing of an appropriate preventive protocol for hospitalized patients with P. aeruginosa burn serious infections. The targeting of these bacterial virulence arsenals is also a promising approach to developing alternative drugs, which act by attenuating the aggressiveness of the pathogen and reducing its potential to cause vigorous infection.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S191-S192
Author(s):  
Angela R Jockheck-Clark ◽  
Randolph Stone ◽  
Michelle Holik ◽  
Lucy Schaffer ◽  
Shanmugasundaram Natesan ◽  
...  

Abstract Introduction Thermal burns account for 5–10% of casualties sustained in present-day conflicts and are expected to be one of the most common wounds to occur in future conflicts. In prolonged field care (PFC) situations, medical evacuation could be delayed for days. During this time, burn wounds can become infected, detrimentally impact neighboring tissue, and cause systemic immune responses. Therefore, it is essential to test and evaluate non-surgical debridement agents that could be implemented prior to reaching a Role 3 military treatment facility. This work details how the proprietary proteolytic gel SN514 impacts burn debridement when applied within a PFC-like timeline. SN514 contains an enzyme formulation that is thermostable, easy to apply, and selectively degrades non-viable tissue in vitro and in vivo. Methods Deep-partial thickness contact burns were created using an established porcine model and covered with gauze or an antimicrobial incise drape. Four days later, the burns were treated with one of five treatments: 0.2% SN514, 0.8% SN514, a vehicle control, gauze, or an antimicrobial silver dressing. Treatments were re-applied every 24 hours for 72 to 96 hours. The effects of the treatment regiments were compared histologically. Biopsies were also taken to monitor bacterial contamination levels. Results Burns treated with SN514 were partially debrided and visually distinct from those treated with gauze, the silver dressing, or the vehicle control. Preliminary analyses suggest that SN514-treated burns that had been covered with “dry” gauze had a much lower debridement efficiency than those treated with the incise drape. This suggests that SN514 debridement efficiency may depend on the presence of a moist eschar. Preliminary analyses also suggest that there was little difference in burn wound bacterial counts among the five treatment groups. Conclusions SN514 is able to debride burns that experienced delayed treatment, without any evidence of harm to the surrounding tissue or evidence of exacerbating the original burn injury. SN514-treated wounds displayed little to no blood loss and did not increase burn wound infection levels compared to wounds treated with gauze or an antimicrobial silver dressing.


Author(s):  
Sujith V ◽  
Poornima G ◽  
Balaji O ◽  
Bairy Kl ◽  
Praveen K ◽  
...  

 Objective: Wound healing is a complex process, and various plant extracts have been used to study the effect of medicinal plants on wound healing. Healol oil is used in some tribal areas for ulcer healing and treatment of burn wounds. There are no animal studies done so far using healol oil to find out its role in the treatment of wounds. Hence, the aim of our study is to find the effect of healol oil in excision as well burn wounds in Wistar rats.Methods: Thirty-six Wistar rats were used, 18 rats in excision wound model and remaining in burn wound model. Each model consists of three groups of six rats each. Povidone-iodine was used as a standard control in excision wound model and silver sulfadiazine was used as a standard control in burn wound model. Healol oil was used as test drug in both the models. Period of epithelization and wound contracture rates were analyzed. Histopathological analysis of the skin tissue was done. One-way analysis of variance was used followed by Tukey’s post hoc test for statistical analysis using SPSS version 23 software, P value of <0.05 was taken as statistical significance.Results: Both standard and test groups showed significantly faster wound healing (p<0.001) compared to control rats treated with paraffin wax in both the models. In excision model standard povidone was significantly (p<0.001) better compared to healol oil whereas in burn model, silver sulfadiazine and healol oil showed comparable results with respect to period of epithelization without statistical significance (p>0.05).Conclusion: Wound healing property of healol oil is proved, and further clinical trial can be done to find out the effect of healol oil on chronic wounds due to various etiologies.


Author(s):  
Pombala Suresh Babu ◽  
Harini Srinivasan ◽  
B. Sai Dhandapani ◽  
C. Rose

Aims: Natural biomaterials are more suitable than synthetic biomaterials for in vivo applications for treating damaged tissues. Collagen and chitosan are abundantly available natural biomaterials for wound dressings for tissue/wound repair. In this context, collagen-chitosan composite powder has been used to treat chronic wounds in Hansen disease (HD) patients. Place and Duration of Study: CSIR Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600021, Southern Railway Headquarters Hospital, Constable Road, Ayanavaram, Chennai 600023, and Gremaltes Hospital, India between June 2013 and July 2020. Methodology: Collagen extracted from bovine rumen, a waste product of meat industry, and a commercially available chitosan were prepared as a composite powder (COL/CS) and applied to chronic wounds in HD patients after debridement and the wound contours were measured by planimetry. Biochemical parameters in blood samples were periodically assessed. Histopathology of wound tissue with Hematoxylin and Eosin and Masson’s Trichrome staining was studied. Matrix Metalloproteinase-9 (MMP9) levels before and after treatment were estimated. Results: Wound healing of 64.2% was obtained with COL/CS treatment and formation of granulation cells was observed early. Hemogram studies have been reported in a regression model with 95% confidence intervals. Histopathology revealed dense collagen fibres and continuity of sub-epithelial layer on 8th day. MMP-9 levels showed collagen integrity after treatment. Conclusion: The novel biocompatible, biodegradable COL/CS wound dressing is a promising biomaterial for management of chronic wounds in Hansen disease patients.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1153
Author(s):  
Verena Schneider ◽  
Daniel Kruse ◽  
Ives Bernardelli de Mattos ◽  
Saskia Zöphel ◽  
Kendra-Kathrin Tiltmann ◽  
...  

Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25% to 5% of the model area and the inflammatory response (IL-1β, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.


2014 ◽  
Vol 2 (4) ◽  
pp. 153 ◽  
Author(s):  
Marta Madaghiele ◽  
Alessandro Sannino ◽  
Luigi Ambrosio ◽  
Christian Demitri

Sign in / Sign up

Export Citation Format

Share Document