scholarly journals Heterozygosity–Fitness Correlations Reveal Inbreeding Depression in Neonatal Body Size in a Critically Endangered Rock Iguana

2019 ◽  
Author(s):  
Jeanette B Moss ◽  
Glenn P Gerber ◽  
Mark E Welch

Abstract Inbreeding depression, though challenging to identify in nature, may play an important role in regulating the dynamics of small and isolated populations. Conversely, greater expression of genetic load can enhance opportunities for natural selection. Conditional expression concentrates these opportunities for selection and may lead to failure of detection. This study investigates the possibility for age-dependent expression of inbreeding depression in a critically endangered population of rock iguanas, Cyclura nubila caymanensis. We employ heterozygote-fitness correlations to examine the contributions of individual genetic factors to body size, a fitness-related trait. Nonsignificant reductions in homozygosity (up to 7%) were detected between neonates and individuals surviving past their first year, which may reflect natural absorption of inbreeding effects by this small, fecund population. The majority of variation in neonate body size was attributed to maternal or environmental effects (i.e., clutch identity and incubation length); however, heterozygosity across 22 microsatellite loci also contributed significantly and positively to model predictions. Conversely, effects of heterozygosity on fitness were not detectable when adults were examined, suggesting that inbreeding depression in body size may be age dependent in this taxon. Overall, these findings emphasize the importance of taking holistic, cross-generational approaches to genetic monitoring of endangered populations.

2002 ◽  
Vol 80 (2) ◽  
pp. 107-116 ◽  
Author(s):  
KONSTANTINOS THEODOROU ◽  
DENIS COUVET

We investigate the joint effects of gene flow and selfing on the level of inbreeding depression, heterosis and genetic load in a subdivided population at equilibrium. Low gene flow reduces inbreeding depression and substantially increases heterosis. However, in highly self-fertilizing populations, inbreeding depression is independent of the amount of gene flow. When migration occurs via pollen, consanguinity of the reproductive system could have a negative influence on subpopulation persistence, in contrast to the case of isolated populations. However, with only seed migration, genetic load and heterosis depend mildly on the mating system. From an evolutionary point of view, we reach two main conclusions: first, outcrossing is selected for if gene flow is low; second, intermediate levels of gene flow could promote mixed mating systems, especially when migration occurs through pollen.


2019 ◽  
Vol 286 (1916) ◽  
pp. 20191989 ◽  
Author(s):  
M. C. Yates ◽  
E. Bowles ◽  
D. J. Fraser

Little empirical work in nature has quantified how wild populations with varying effective population sizes and genetic diversity perform when exposed to a gradient of ecologically important environmental conditions. To achieve this, juvenile brook trout from 12 isolated populations or closed metapopulations that differ substantially in population size and genetic diversity were transplanted to previously fishless ponds spanning a wide gradient of ecologically important variables. We evaluated the effect of genome-wide variation, effective population size ( N e ), pond habitat, and initial body size on two fitness correlates (survival and growth). Genetic variables had no effect on either fitness correlate, which was determined primarily by habitat (pond temperature, depth, and pH) and initial body size. These results suggest that some vertebrate populations with low genomic diversity, low N e , and long-term isolation can represent important sources of variation and are capable of maintaining fitness in, and ultimately persisting and adapting to, changing environments. Our results also reinforce the paramount importance of improving available habitat and slowing habitat degradation for species conservation.


2001 ◽  
Vol 35 (2) ◽  
pp. 124-129 ◽  
Author(s):  
LNB Almeida ◽  
RS Azevedo ◽  
M Amaku ◽  
E Massad

INTRODUCTION: After the era of rubella vaccine, cytomegalovirus (CMV) infection is one of the most frequently causes of mental retardation and congenital deafness. Seroepidemiological studies are necessary to understand the transmission dynamics of the disease. The purpose of the study was to quantify the transmission rate of CMV disease in a community in the state of São Paulo, Brazil. METHODS: Using ELISA test (IgG), a retrospective serological survey looking for CMV antibodies was performed in an non-immunized community. Frozen sera from 443 individuals, randomly selected by cluster sampling technique in the town of Caieiras, São Paulo, were collected from November 1990 to January 1991. Seroprevalence was stratified by age (0-40 years). Mathematical techniques were applied to determine the age-dependent decay function of maternal antibodies during the first year of life, the age-dependent seroprevalence function and the force of infection for CMV in this community. RESULTS: It was observed a descending phase of seropositivity in the first 9 months, but changes in antibody titration were observed between 8 months old and one year of age. The average age of the first infection was 5.02 months of age and 19.84 years, when the age-dependent seroprevalence and the force of infection were analyzed between 10 months of age and 10 years of age and from 10 to 40 years old, respectively. CONCLUSION: CMV infection is highly prevalent among the population studied and infection occurs in the first year of life. This study shows that most women at reproductive age are vulnerable to the first infection, increasing the risk for congenital infection.


1997 ◽  
Vol 45 (5) ◽  
pp. 447 ◽  
Author(s):  
Cameron M. Bell ◽  
Harry R. Burton ◽  
Mark A. Hindell

A longitudinal study of growth of southern elephant seals, Mirounga leonina, during their first foraging trip was undertaken at Macquarie Island. On average, body mass increased by 75% while foraging at sea, with individuals growing at 0.34 ± 0.12 (s.d.) kg day-1 (n = 64), and spending 182 ± 51 days (n = 64) at sea. Relatively smaller changes in body length were recorded during the same period, suggesting that growth was composed primarily of adjustments to body composition, rather than increases in gross body size. This may be in response to the functional demands of pelagic life. Body size established early in life (birth mass and departure mass) positively influenced body mass upon return from the first foraging trip. Growth rate, however, was negatively related to departure mass for females, and this is hypothesised to be related to sex differences in body composition, as well as intrasex differences in foraging skills, diving ability and food- conversion efficiency. Despite this, there was no detectable age-specific sexual dimorphism in the first year of life. Animals that were at sea longer tended to return in better body condition. Interspecific comparison suggests that southern elephant seals grow more than do northern elephant seals, Mirounga angustirostris, and this difference may be related to prey abundance and distribution.


2011 ◽  
Vol 22 (3) ◽  
pp. 348-353
Author(s):  
ANDREA NÁJERA ◽  
JAVIER A. SIMONETTI

SummaryIdentifying attributes that affect the vulnerability of a species to extinction is important as it allows conservation efforts to be focused on more susceptible species. We assessed whether threatened birds of Guatemala are a random subset of the avifauna, considering their taxonomic affiliation, body size, diet and geographical distribution. We found that threatened bird species in Guatemala were neither taxonomically nor geographically randomly distributed. Large-bodied species and Psittaciformes, Galliformes, Falconiformes and Ciconiformes were among the most threatened groups, and the Pacific slopes of the country hosted more threatened birds than would be expected. Published scientific information regarding Critically Endangered bird species in Guatemala is scant and biased against nocturnal and aquatic species. Research and conservation efforts ought to be oriented toward these species and regions to safeguard the Guatemalan avifauna. This study allows an overall consideration on whether we are conserving the species and areas that are important for threatened birds.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Inbreeding reduces survival and reproduction (i.e. it causes inbreeding depression), and thereby increases extinction risk. Inbreeding depression is due to increased homozygosity for harmful alleles and at loci exhibiting heterozygote advantage. Inbreeding depression is nearly universal in sexually reproducing organisms that are diploid or have higher ploidies. Impacts of inbreeding are generally greater in species that naturally outbreed than those that inbreed, in stressful than benign environments, and for fitness than peripheral traits. Harmful effects accumulate across the life cycle, resulting in devastating effects on total fitness in outbreeding species.Species face ubiquitous environmental change and must adapt or they will go extinct. Genetic diversity is the raw material required for evolutionary adaptation. However, loss of genetic diversity is unavoidable in small isolated populations, diminishing their capacity to evolve in response to environmental changes, and thereby increasing extinction risk.


2000 ◽  
Vol 75 (1) ◽  
pp. 75-81 ◽  
Author(s):  
THOMAS BATAILLON ◽  
MARK KIRKPATRICK

We studied the effects of population size on the inbreeding depression and genetic load caused by deleterious mutations at a single locus. Analysis shows how the inbreeding depression decreases as population size becomes smaller and/or the rate of inbreeding increases. This pattern contrasts with that for the load, which increases as population size becomes smaller but decreases as inbreeding rate goes up. The depression and load both approach asymptotic limits when the population size becomes very large or very small. Numerical results show that the transition between the small and the large population regimes is quite rapid, and occurs largely over a range of population sizes that vary by a factor of 10. The effects of drift on inbreeding depression may bias some estimates of the genomic rate of deleterious mutation. These effects could also be important in the evolution of breeding systems in hermaphroditic organisms and in the conservation of endangered populations.


2006 ◽  
Vol 12 (2) ◽  
pp. 134 ◽  
Author(s):  
David M. J. S. Bowman ◽  
Daniel L McIntyre ◽  
Barry W. Brook

The Carpentarian Rock-rat Zyzomys palatalis is a rare conilurine rodent with a global distribution restricted to a small area of sandstone escarpments in the Gulf of Carpentaria region of the Northern Territory. Previous assessments of its World Conservation Union (IUCN) status in 1996 had classified the species as Critically Endangered based on the restricted area of occupancy and a putative decline in the extent and quality of its closed forest habitat due to uncontrolled landscape fires. A later population viability analysis confirmed that habitat loss was potentially the single most important threatening process. Here we argue that the species should be reclassified as Vulnerable, on the basis of the following new evidence: (1) the assumption that it was a closed forest specialist was not supported by a radiotracking study, which showed that on average 43% of an individual's monitored time was spent in the forest-savannah margin, and (2) analysis of repeat historical aerial photography has shown that the core closed forest habitat has in fact increased by 36% over the last 50 years. This has lead to an increase of 140 in the minimum number of equivalent Z. paJatalis territories, from 387 to 587, when home range overlaps and utilization of the savannah margins are considered. Reclassification of the species' conservation status should be accompanied with: (i) genetic studies of relatedness between isolated populations; (ii) monitoring and maintenance of the integrity of the landscapes, including creeklines that connect patches; and (iii) consideration of the introduction of captive bred specimens into an adjacent unoccupied fragments.


Author(s):  
Donald M. Waller ◽  
Lukas F. Keller

Inbreeding (also referred to as “consanguinity”) occurs when mates are related to each other due to incest, assortative mating, small population size, or population sub-structuring. Inbreeding results in an excess of homozygotes and hence a deficiency of heterozygotes. This, in turn, exposes recessive genetic variation otherwise hidden by heterozygosity with dominant alleles relative to random mating. Interest in inbreeding arose from its use in animal and plant breeding programs to expose such variation and to fix variants in genetically homogenous lines. Starting with Gregor Mendel’s experiments with peas, geneticists have widely exploited inbreeding as a research tool, leading R. C. Lewontin to conclude that “Every discovery in classical and population genetics has depended on some sort of inbreeding experiment” (see Lewontin’s 1965 article “The Theory of Inbreeding.” Science 150:1800–1801). Charles Darwin wrote an entire book on the effects of inbreeding as measured in fifty-two taxa of plants. He and others noted that most plants and animals go to great length to avoid inbreeding, suggesting that inbreeding has high costs that often outweigh the benefits of inbreeding. Benefits of inbreeding include increased genetic transmission while the costs of inbreeding manifest as inbreeding depression when deleterious, mostly recessive alleles otherwise hidden as heterozygotes emerge in homozygote form upon inbreeding. Inbreeding also reduces fitness when heterozygotes are more fit than both homozygotes, but such overdominance is rare. Recurrent mutation continuously generates deleterious recessive alleles that create a genetic “load” of deleterious mutations mostly hidden within heterozygotes in outcrossing populations. Upon inbreeding, the load is expressed when deleterious alleles segregate as homozygotes, causing often substantial inbreeding depression. Although inbreeding alone does not change allele frequencies, it does redistribute genetic variation, reducing it within families or populations while increasing it among families or populations. Inbreeding also increases selection by exposing deleterious recessive mutations, a process called purging that can deplete genetic variation. For all these reasons, inbreeding is a central concept in evolutionary biology. Inbreeding is also central to conservation biology as small and isolated populations become prone to inbreeding and thus suffer inbreeding depression. Inbreeding can reduce population viability and increase extinction risk by reducing individual survival and/or reproduction. Such effects can often be reversed, however, by introducing new genetic material that re-establishes heterozygosity (“genetic rescue”). The current availability of DNA sequence and expression data is now allowing more detailed analyses of the causes and evolutionary consequences of inbreeding.


Sign in / Sign up

Export Citation Format

Share Document