scholarly journals Biosynthesis of sulfonamide and sulfamate antibiotics in Actinomycete

Author(s):  
Takayoshi Awakawa ◽  
Lena Barra ◽  
Ikuro Abe

Abstract Sulfonamides and sulfamates are a group of organosulfur compounds that contain the signature sulfamoyl structural motif. These compounds were initially only known as synthetic antibacterial drugs but were later also discovered as natural products. Eight highly potent examples have been isolated from actinomycetes to date, illustrating the large biosynthetic repertoire of this bacterial genus. For the biosynthesis of these compounds, several distinct and unique biosynthetic machineries have been discovered, capable to generate the unique S-N bond. For the creation of novel, second generation natural products by biosynthetic engineering efforts, a detailed understanding of the underlying enzyme machinery towards potent structural motifs is crucial. In this review, we aim to summarize the current state of knowledge on sulfonamide and sulfamate biosynthesis. A detailed discussion for the secondary sulfamate ascamycin, the tertiary sulfonamide sulfadixiamycin A, and the secondary sulfonamide SB-203208 is provided and their bioactivities and mode of actions are discussed.

2021 ◽  
Vol 28 ◽  
Author(s):  
Xi Khai Wong ◽  
Keng Yoon Yeong

: Nucleobases represent key structural motif in biologically active molecules including synthetic and natural products. Molecular modifications made on nucleobases or their isolation from natural sources are being widely investigated for the development of drugs with improved potency for the treatment of different diseases, such as cancer, as well as viral and bacterial infections. This review article focuses on the nucleobase analogue drug developments of the past 20 years (2000-2020). Various pharmacological and medicinal aspects of nucleobases and their analogues are discussed. The current state and limitations are also highlighted.


2022 ◽  
Author(s):  
Suze Ma ◽  
Dhanaraju Mandalapu ◽  
Shu Wang ◽  
Qi Zhang

This review discusses the diverse enzymatic pathways in the biosynthesis of cyclopropane, a unique structural motif with important biochemical properties.


Author(s):  
Pawan Surendra Dhote ◽  
Pitambar Patel ◽  
Kumar Vanka ◽  
Chepuri Ramana

The pseudoindoxyl sub-structural motif, amongst the large set of the indole class of alkaloids, represents a unique subset of the oxygenated indole class of the alkaloids family. A majority of...


2021 ◽  
Author(s):  
Suven Das

Phthalimides are privileged structural motif frequently found in natural products, pharmaceuticals and organic materials. The Most common strategy for their synthesis involves condensation of phthalic acids/anhydrides with primary amines. However,...


Synlett ◽  
2018 ◽  
Vol 29 (03) ◽  
pp. 257-265 ◽  
Author(s):  
Song Lin ◽  
Joseph Parry ◽  
Niankai Fu

Vicinal diamines are highly prevalent structural motifs in therapeutic agents, bioactive natural products, and molecular catalysts. However, there are currently few unified methodological approaches for making these pertinent synthetic building blocks. This Synpacts article provides an overview of selected landmark developments in the area of olefin diamination. In particular, we highlight our recent contribution on the electrocatalytic diazidation of olefins as a general, selective, and sustainable method for the synthesis of vicinal diamines.1 Introduction2 Background: Intermolecular Diamination of Olefins3 Background: Intermolecular Diazidation of Olefins4 Electrocatalytic Diazidation of Olefins


2019 ◽  
Vol 17 (31) ◽  
pp. 7270-7292 ◽  
Author(s):  
Sagar S. Thorat ◽  
Ravindar Kontham

Oxaspirolactones are ubiquitous structural motifs found in natural products and synthetic molecules with a diverse biochemical and physicochemical profile, and represent a valuable target in natural product chemistry and medicinal chemistry.


Synlett ◽  
2020 ◽  
Vol 31 (04) ◽  
pp. 327-333 ◽  
Author(s):  
Jesper L. Kristensen ◽  
Sebastian Clementson ◽  
Mikkel Jessing ◽  
Paulo J. Vital

Erythrina alkaloids were identified at the end of the 19th century and today, more than 100 members of the erythrinane family have been isolated. They are characterized by a unique tetracyclic, α-tertiary spiroamine scaffold. Herein we detail our efforts towards the development of a divergent enantioselective synthesis of (+)-dihydro-β-erythroidine (DHβE) – one of the most prominent members of this intriguing family of natural products.1 Introduction2 Synthetic Strategy2.1 First Generation2.2 Second Generation2.3 Third Generation2.3.1 Radical Endgame2.3.2 Completion of the Total Synthesis3 Conclusion


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 28 ◽  
Author(s):  
Alessandra Casnati ◽  
Elena Motti ◽  
Raffaella Mancuso ◽  
Bartolo Gabriele ◽  
Nicola Della Ca’

2-Imidazolidinone and its analogues are omnipresent structural motifs of pharmaceuticals, natural products, chiral auxiliaries, and intermediates in organic syntheses. Over the years, continuous efforts have been addressed to the development of sustainable and more efficient protocols for the synthesis of these heterocycles. This review gives a summary of the catalytic strategies to access imidazolidin-2-ones and benzimidazolidin-2-ones that have appeared in the literature from 2010 to 2018. Particularly important contributions beyond the timespan will be mentioned. The review is organized in four main chapters that identify the most common approaches to imidazolidin-2-one derivatives: (1) the direct incorporation of the carbonyl group into 1,2-diamines, (2) the diamination of olefins, (3) the intramolecular hydroamination of linear urea derivatives and (4) aziridine ring expansion. Methods not included in this classification will be addressed in the miscellaneous section.


Sign in / Sign up

Export Citation Format

Share Document