scholarly journals The Potential Global Distribution and Voltinism of the Japanese Beetle (Coleoptera: Scarabaeidae) Under Current and Future Climates

2019 ◽  
Vol 19 (2) ◽  
Author(s):  
Erica Jean Kistner-Thomas

Abstract Japanese beetle, Popillia japonica (Newman), is a severe invasive insect pest of turf, landscapes, and horticultural crops. It has successfully colonized much of the United States and has recently established in mainland Europe. The distribution and voltinism of P. japonica will undoubtedly change as a consequence of climate change, posing additional challenges to the management of this species. To assess these challenges, a process-oriented bioclimatic niche model for P. japonica was developed to examine its potential global distribution under current (1981–2010) and projected climatic conditions (2040–2059) using one emission scenario (representative concentration pathway [RCP] 8.5) and two global climate models, ACCESS1-0 and CNRM-CM5. Under current climatic conditions, the bioclimatic niche model agreed well with all credible distribution data. Model projections indicate a strong possibility of further range expansion throughout mainland Europe under both current and future climates. In North America, projected increases in temperature would enable northward range expansion across Canada while simultaneously shifting southern range limits in the United States. In Europe, the suitable range for P. japonica would increase by 23% by midcentury, especially across portions of the United Kingdom, Ireland, and Scandinavia. Under the RCP 8.5 scenario, cumulative growing degree-days increased, thereby reducing the probability of biannual life cycles in northern latitudes where they can occur, including Hokkaido, Japan, northeastern portions of the United States, and southern Ontario, Canada. The results of this study highlight several regions of increasing and emerging risk from P. japonica that should be considered routinely in ongoing biosecurity and pest management surveys.

2021 ◽  
Author(s):  
Danielle M Tufts ◽  
Maria A Diuk-Wasser

Abstract Invasive arthropod vectors and the range expansions of native vectors can lead to public and veterinary health concerns, as these vectors may introduce novel pathogens or spread endemic pathogens to new locations. Recent tick invasions and range expansion in the United States has been attributed to climate and land use change, an increase in global travel, and importations of exotic animals. A 10 year surveillance study was conducted on Block Island, Rhode Island from 2010–2020 including sampling ticks from small mammal and avian hosts. We report the discovery and establishment of the red sheep tick for the first time in the western hemisphere and in the United States. This invasive species was first collected in 2010 on Block Island, was collected continuously throughout the study, and was collected from an avian host. We document the first report of the invasive Asian longhorned tick in the state of Rhode Island, first observed at our sites in 2018. Finally, we present data on the range expansion and establishment of two native tick species, the lone star tick and the rabbit tick on Block Island. This study emphasized the importance of long-term surveillance to detect changes in tick host communities, including invasive and expanding native vectors of potential significance to humans and wildlife.


2019 ◽  
Vol 43 (4) ◽  
pp. 88-127 ◽  
Author(s):  
Eliza Gheorghe

The evolution of the nuclear market explains why there are only nine members of the nuclear club, not twenty-five or more, as some analysts predicted. In the absence of a supplier cartel that can regulate nuclear transfers, the more suppliers there are, the more intense their competition will be, as they vie for market share. This commercial rivalry makes it easier for nuclear technology to spread, because buyers can play suppliers off against each other. The ensuing transfers help countries either acquire nuclear weapons or become hedgers. The great powers (China, Russia, and the United States) seek to thwart proliferation by limiting transfers and putting safeguards on potentially dangerous nuclear technologies. Their success depends on two structural factors: the global distribution of power and the intensity of the security rivalry among them. Thwarters are most likely to stem proliferation when the system is unipolar and least likely when it is multipolar. In bipolarity, their prospects fall somewhere in between. In addition, the more intense the rivalry among the great powers in bipolarity and multipolarity, the less effective they will be at curbing proliferation. Given the potential for intense security rivalry among today's great powers, the shift from unipolarity to multipolarity does not portend well for checking proliferation.


Koedoe ◽  
1991 ◽  
Vol 34 (1) ◽  
Author(s):  
G.H. Groenewald

Five types of burrow casts from the Lystrosaurus- Procolophon Assemblage-zone (Palingkloof Member and Katberg Formation, Triassic, Karoo sequence. South Africa) are associated with casts of desiccation cracks and red mudstone. Vertebrate remains of Lystrosaurus sp. and Procolophon sp. indicate that these animals probably made the burrows during the Triassic. It is possible that burrowing was an adaptive advantage during periods of severe and unfavourable climatic conditions. Similar burrow casts were found in the Dicynodon-Theriognathus Assemblage-zone, suggesting a burrowing habit for fauna represented in this zone. In structure, the burrow casts resemble those of Scoyenia, Thalassinoides, Histioderma, Gyrolithes and Planolites reported from Germany, France, Asia, Ireland, Spain and the United States of America.


Zootaxa ◽  
2018 ◽  
Vol 4479 (1) ◽  
pp. 1 ◽  
Author(s):  
CHARLES S. EISEMAN ◽  
OWEN LONSDALE

We present rearing records of Agromyzidae (Diptera) from five years of collecting throughout the United States. We review host and distribution data, and describe leaf mines, for 93 species, plus 28 others that could not be confidently identified in the absence of male specimens. We report 147 new host species records, including the first rearing records for Agromyza bispinata Spencer, A. diversa Johnson, A. parca Spencer, A. pudica Spencer, A. vockerothi Spencer, Calycomyza michiganensis Steyskal, Ophiomyia congregata (Malloch), and Phytomyza aldrichi Spencer. Phytomyza anemones Hering and (tentatively identified) Cerodontha (Dizygomyza) iraeos (Robineau-Desvoidy) are new to North America; Agromyza albitarsis Meigen, Amauromyza shepherdiae Sehgal, Aulagromyza populicola (Walker), Liriomyza orilliensis Spencer, Phytomyza linnaeae (Griffiths), P. solidaginivora Spencer, and P. solidaginophaga Sehgal are new to the USA. We also present confirmed USA records for Calycomyza menthae Spencer (previous records were based only on leaf mines), Ophiomyia maura (Meigen) (reported from the USA in older literature but deleted from the fauna in the most recent revision (Spencer & Steyskal 1986)), and Phytomyza astotinensis Griffiths and P. thalictrivora Spencer (previously only tentatively recorded from the USA). We provide 111 additional new state records. We describe the following 30 new species: Agromyza fission, A. soka, Melanagromyza palmeri, Ophiomyia euthamiae, O. mimuli, O. parda, Calycomyza artemisivora, C. avira, C. eupatoriphaga, C. vogelmanni, Cerodontha (Dizygomyza) edithae, Cer. (D.) feldmani, Liriomyza ivorcutleri, L. valerianivora, Phytomyza actaeivora, P. aesculi, P. confusa, P. doellingeriae, P. erigeronis, P. hatfieldae, P. hydrophyllivora, P. palmeri, P. palustris, P. sempervirentis, P. tarnwoodensis, P. tigris, P. triangularidis, P. vancouveriella, P. verbenae, and P. ziziae. 


Author(s):  
Basak Aldemir Bektas ◽  
Zachary Hans ◽  
Brent Phares ◽  
Emmanuel Nketah ◽  
Joe Carey ◽  
...  

Bats play an important role in the natural balance of many ecosystems. There has been a growing concern about the bat population in the United States, mainly because of white-nose syndrome (WNS). The primary objective of this work was to better understand what types of bridges are the most likely to be used by bats as roosting locations. In one of the most comprehensive studies in the United States to date, 517 structures in the state of Iowa were inspected for evidence of bat roosting. Logistic regression models were fitted to identify structure, land cover distribution, and predicted bat species distribution characteristics that increase the probability of bat roosting. The final model indicated that probability of bat roosting on bridges increases under the following conditions: structures are prestressed concrete continuous, prestressed concrete or steel continuous; increased superstructure height above ground; increased superstructure depth; increased wetland coverage within a 0.1-mile radius of the structure; and increased number of potential bat species present at the location. The findings show that bridge characteristics, combined with land cover and bat species distribution data, are significant for higher probabilities of bat roosting. This information can be useful to transportation agencies as they plan bridge maintenance and renewal and can also help conservation efforts targeted toward bats. It is thought that the integration of objective, geospatial land cover data with potential bat presence data, and estimation of quantitative and relative influence of variables on probability of bat roosting are unique to this study.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
James Rising ◽  
Naresh Devineni

AbstractA key strategy for agriculture to adapt to climate change is by switching crops and relocating crop production. We develop an approach to estimate the economic potential of crop reallocation using a Bayesian hierarchical model of yields. We apply the model to six crops in the United States, and show that it outperforms traditional empirical models under cross-validation. The fitted model parameters provide evidence of considerable existing climate adaptation across counties. If crop locations are held constant in the future, total agriculture profits for the six crops will drop by 31% for the temperature patterns of 2070 under RCP 8.5. When crop lands are reallocated to avoid yield decreases and take advantage of yield increases, half of these losses are avoided (16% loss), but 57% of counties are allocated crops different from those currently planted. Our results provide a framework for identifying crop adaptation opportunities, but suggest limits to their potential.


1971 ◽  
Vol 49 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Dennis M. Power

The Brewer's blackbird (Euphagus cyanocephalus) is rapidly expanding its range eastward across Ontario and parts of the United States. This study was to determine if phenetic changes have taken place during or immediately after expansion. A sample was collected in 1968 in the vicinity of McKerrow, Ontario, near the periphery of the zone of expansion and where breeding was first recorded in 1962. For comparison, a second collection was made in the stable part of the range near Winnipeg, Manitoba. Statistical comparisons for 37 skin and skeletal characters were made between the two samples for both sexes. Tests for differences in character means suggest that strong directional selection, different from that in the stable part of the range, is not operating in the newly occupied area. Likewise, differences in population variability seem slight and do not show alterations in genetic variability that would be expected during a Carsonian population flush or that would be expected because of a partial founder effect.


2018 ◽  
Author(s):  
Matthew Nichols ◽  
Chris J Butler ◽  
Wayne D Lord ◽  
Michelle L Haynie

The vector-borne parasite Trypanosoma cruzi infects seven million individuals globally and causes chronic cardiomyopathy and gastrointestinal diseases. Recently, T. cruzi has emerged in the southern United States. It is crucial for disease surveillance efforts to detail regions that present favorable climatic conditions for T. cruzi and vector establishment. We used MaxEnt to develop an ecological niche model for T. cruzi and five widespread Triatoma vectors based on 546 published localities within the United States. We modeled regions of current potential T. cruzi and Triatoma distribution and then regions projected to have suitable climatic conditions by 2070. Regions with suitable climatic conditions for the study organisms are predicted to increase within the United States. Our findings agree with the hypothesis that climate change will facilitate the expansion of tropical diseases throughout temperate regions and suggest climate change will influence the expansion of T. cruzi and Triatoma vectors in the United States.


Sign in / Sign up

Export Citation Format

Share Document