scholarly journals β-catenin activation in hair follicle dermal stem cells induces ectopic hair outgrowth and skin fibrosis

2018 ◽  
Vol 11 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Yixin Tao ◽  
Qingchun Yang ◽  
Lei Wang ◽  
Jie Zhang ◽  
Xuming Zhu ◽  
...  

Abstract Hair follicle dermal sheath (DS) harbors hair follicle dermal stem cells (hfDSCs), which can be recruited to replenish DS and dermal papilla (DP). Cultured DS cells can differentiate into various cell lineages in vitro. However, it is unclear how its plasticity is modulated in vivo. Wnt/β-catenin signaling plays an important role in maintaining stem cells of various lineages and is required for HF development and regeneration. Here we report that activation of β-catenin in DS generates ectopic HF outgrowth (EF) by reprogramming HF epidermal cells and DS cells themselves, and endows DS cells with hair inducing ability. Epidermal homeostasis of pre-existing HFs is disrupted. Additionally, cell-autonomous progressive skin fibrosis is prominent in dermis, where the excessive fibroblasts largely originate from DS. Gene expression analysis of purified DS cells with activated β-catenin revealed significantly increased expression of Bmp, Fgf, and Notch ligands and administration of Bmp, Fgf, or Notch signaling inhibitor attenuates EF formation. In summary, our findings advance the current knowledge of high plasticity of DS cells and provide an insight into understanding how Wnt/β-catenin signaling controls DS cell behaviors.

2020 ◽  
Vol 27 (21) ◽  
pp. 3448-3462
Author(s):  
Marco Piccoli ◽  
Andrea Ghiroldi ◽  
Michelle M. Monasky ◽  
Federica Cirillo ◽  
Giuseppe Ciconte ◽  
...  

The development of new therapeutic applications for adult and embryonic stem cells has dominated regenerative medicine and tissue engineering for several decades. However, since 2006, induced Pluripotent Stem Cells (iPSCs) have taken center stage in the field, as they promised to overcome several limitations of the other stem cell types. Nonetheless, other promising approaches for adult cell reprogramming have been attempted over the years, even before the generation of iPSCs. In particular, two years before the discovery of iPSCs, the possibility of synthesizing libraries of large organic compounds, as well as the development of high-throughput screenings to quickly test their biological activity, enabled the identification of a 2,6-disubstituted purine, named reversine, which was shown to be able to reprogram adult cells to a progenitor-like state. Since its discovery, the effect of reversine has been confirmed on different cell types, and several studies on its mechanism of action have revealed its central role in inhibitory activity on several kinases implicated in cell cycle regulation and cytokinesis. These key features, together with its chemical nature, suggested a possible use of the molecule as an anti-cancer drug. Remarkably, reversine exhibited potent cytotoxic activity against several tumor cell lines in vitro and a significant effect in decreasing tumor progression and metastatization in vivo. Thus, 15 years since its discovery, this review aims at critically summarizing the current knowledge to clarify the dual role of reversine as a dedifferentiating agent and anti-cancer drug.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yiqun Su ◽  
Jie Wen ◽  
Junrong Zhu ◽  
Zhiwei Xie ◽  
Chang Liu ◽  
...  

Abstract Background Billions of dollars are invested annually by pharmaceutical companies in search of new options for treating hair loss conditions; nevertheless, the challenge remains. One major limitation to hair follicle research is the lack of effective and efficient drug screening systems using human cells. Organoids, three-dimensional in vitro structures derived from stem cells, provide new opportunities for studying organ development, tissue regeneration, and disease pathogenesis. The present study focuses on the formation of human hair follicle organoids. Methods Scalp-derived dermal progenitor cells mixed with foreskin-derived epidermal stem cells at a 2:1 ratio aggregated in suspension to form hair follicle-like organoids, which were confirmed by immunostaining of hair follicle markers and by molecular dye labeling assays to analyze dermal and epidermal cell organization in those organoids. The hair-forming potential of organoids was examined using an in vivo transplantation assay. Results Pre-aggregation of dermal and epidermal cells enhanced hair follicle formation in vivo. In vitro pre-aggregation initiated the interactions of epidermal and dermal progenitor cells resulting in activation of the WNT pathway and the formation of pear-shape structures, named type I aggregates. Cell-tracing analysis showed that the dermal and epidermal cells self-assembled into distinct epidermal and dermal compartments. Histologically, the type I aggregates expressed early hair follicle markers, suggesting the hair peg-like phase of hair follicle morphogenesis. The addition of recombinant WNT3a protein to the medium enhanced the formation of these aggregates, and the Wnt effect could be blocked by the WNT inhibitor, IWP2. Conclusions In summary, our system supports the rapid formation of a large number of hair follicle organoids (type I aggregates). This system provides a platform for studying epithelial-mesenchymal interactions, for assessing inductive hair stem cells and for screening compounds that support hair follicle regeneration.


2021 ◽  
Vol 22 (4) ◽  
pp. 2143 ◽  
Author(s):  
Justin J.Y. Tan ◽  
Duc-Viet Nguyen ◽  
John E. Common ◽  
Chunyong Wu ◽  
Paul C.L. Ho ◽  
...  

Hair follicle morphogenesis is heavily dependent on reciprocal, sequential, and epithelial-mesenchymal interaction (EMI) between epidermal stem cells and the specialized cells of the underlying mesenchyme, which aggregate to form the dermal condensate (DC) and will later become the dermal papilla (DP). Similar models were developed with a co-culture of keratinocytes and DP cells. Previous studies have demonstrated that co-culture with keratinocytes maintains the in vivo characteristics of the DP. However, it is often challenging to develop three-dimensional (3D) DP and keratinocyte co-culture models for long term in vitro studies, due to the poor intercellular adherence between keratinocytes. Keratinocytes exhibit exfoliative behavior, and the integrity of the DP and keratinocyte co-cultured spheroids cannot be maintained over prolonged culture. Short durations of culture are unable to sufficiently allow the differentiation and re-programming of the keratinocytes into hair follicular fate by the DP. In this study, we explored a microgel array approach fabricated with two different hydrogel systems. Using poly (ethylene glycol) diacrylate (PEGDA) and gelatin methacrylate (GelMA), we compare their effects on maintaining the integrity of the cultures and their expression of important genes responsible for hair follicle morphogenesis, namely Wnt10A, Wnt10B, and Shh, over prolonged duration. We discovered that low attachment surfaces such as PEGDA result in the exfoliation of keratinocytes and were not suitable for long-term culture. GelMA, on the hand, was able to sustain the integrity of co-cultures and showed higher expression of the morphogens overtime.


Author(s):  
Anna L. Höving ◽  
Beatrice A. Windmöller ◽  
Cornelius Knabbe ◽  
Barbara Kaltschmidt ◽  
Christian Kaltschmidt ◽  
...  

Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors’ sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.


2015 ◽  
Vol 10s1 ◽  
pp. BMI.S20057 ◽  
Author(s):  
Prafulla Chandra ◽  
Sang Jin Lee

The innate ability of stem cells to self-renew and differentiate into multiple cell types makes them a promising source for tissue engineering and regenerative medicine applications. Their capacity for self-renewal and differentiation is largely influenced by the combination of physical, chemical, and biological signals found in the stem cell niche, both temporally and spatially. Embryonic and adult stem cells are potentially useful for cell-based approaches; however, regulating stem cell behavior remains a major challenge in their clinical use. Most of the current approaches for controlling stem cell fate do not fully address all of the complex signaling pathways that drive stem cell behaviors in their natural microenvironments. To overcome this limitation, a new generation of biomaterials is being developed for use as three-dimensional synthetic microenvironments that can mimic the regulatory characteristics of natural extracellular matrix (ECM) proteins and ECM-bound growth factors. These synthetic microenvironments are currently being investigated as a substrate with surface immobilization and controlled release of bioactive molecules to direct the stem cell fate in vitro, as a tissue template to guide and improve the neo-tissue formation both in vitro and in vivo, and as a delivery vehicle for cell therapy in vivo. The continued advancement of such an intelligent biomaterial system as the synthetic extracellular microenvironment holds the promise of improved therapies for numerous debilitating medical conditions for which no satisfactory cure exists today.


2018 ◽  
Vol 54 ◽  
pp. 94-104 ◽  
Author(s):  
Anastasiia Kosykh ◽  
Arkadii Beilin ◽  
Kirill Sukhinich ◽  
Ekaterina Vorotelyak

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Su Yeon Kim ◽  
Won Kyong Cho ◽  
Hye-In Kim ◽  
Seung Hye Paek ◽  
Sung Joo Jang ◽  
...  

Porphyra-334 is a kind of mycosporine-like amino acid absorbing ultraviolet-A. Here, we characterized porphyra-334 as a potential antiaging agent. An in vitro assay revealed that porphyra-334 dramatically promoted collagen synthesis in fibroblast cells. The effect of porphyra-334 on cell proliferation was dependent on the cell type, and the increase of cell viability by porphyra-334 was the highest in keratinocyte cells among the three tested cell types. An in vivo clinical test with 22 participants demonstrated the possible role of porphyra-334 in the improvement of periorbital wrinkles. RNA-sequencing using human follicle dermal papilla (HFDP) cells upon porphyra-334 treatment identified the upregulation of metallothionein- (MT-) associated genes, confirming the antioxidant role of porphyra-334 with MT. Moreover, the expression of genes involved in nuclear chromosome segregation and the encoding of components of kinetochores was upregulated by porphyra-334 treatment. Furthermore, we found that several genes associated with the hair follicle cycle, the hair follicle structure, the epidermal structure, and stem cells were upregulated by porphyra-334 treatment, suggesting the potential role of porphyra-334 in hair follicle growth and maintenance. In summary, we provided several new pieces of evidence of porphyra-334 as a potential antiaging cosmetic agent and elucidated the expression network in HFDP cells upon porphyra-334.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiyue Deng ◽  
Yuying Zhang ◽  
Wei Wang ◽  
Aishi Song ◽  
Omar Mukama ◽  
...  

Abstract Background Alopecia areata (AA) is a common autoimmune hair loss disease with increasing incidence. Corticosteroids are the most widely used for hair loss treatment; however, long-term usage of hormonal drugs is associated with various side effects. Mesenchymal stem cells (MSCs) therapy has been studied extensively to curb autoimmune diseases without affecting immunity against diseases. Methods Hair follicle-derived MSCs (HF-MSCs) were harvested from the waste material of hair transplants, isolated and expanded. The therapeutic effect of HF-MSCs for AA treatment was investigated in vitro AA-like hair follicle organ model and in vivo C3H/HeJ AA mice model. Results AA-like hair follicle organ in vitro model was successfully established by pre-treatment of mouse vibrissa follicles by interferon-γ (IFN-γ). The AA-like symptoms were relieved when IFN-γ induced AA in vitro model was co-cultured with HF-MSC for 2 days. In addition, when skin grafted C3H/HeJ AA mice models were injected with 106 HF-MSCs once a week for 3 weeks, the transcription profiling and immunofluorescence analysis depicted that HF-MSCs treatment significantly decreased mouse hair loss and reduced inflammation around HF both in vitro and in vivo. Conclusions This study provides a new therapeutic approach for alopecia areata based on HF-MSCs toward its future clinical application.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Huangdi Li ◽  
Jinghui Huang ◽  
Yanpeng Wang ◽  
Ziyuan Chen ◽  
Xing Li ◽  
...  

The surficial micro/nanotopography and physiochemical properties of titanium implants are essential for osteogenesis. However, these surface characters’ influence on stem cell behaviors and osteogenesis is still not fully understood. In this study, titanium implants with different surface roughness, nanostructure, and wettability were fabricated by further nanoscale modification of sandblasted and acid-etched titanium (SLA: sandblasted and acid-etched) by H2O2 treatment (hSLAs: H2O2 treated SLA). The rat bone mesenchymal stem cells (rBMSCs: rat bone mesenchymal stem cells) are cultured on SLA and hSLA surfaces, and the cell behaviors of attachment, spreading, proliferation, and osteogenic differentiation are further analyzed. Measurements of surface characteristics show hSLA surface is equipped with nanoscale pores on microcavities and appeared to be hydrophilic. In vitro cell studies demonstrated that the hSLA titanium significantly enhances cell response to attachment, spreading, and proliferation. The hSLAs with proper degree of H2O2 etching (h1SLA: treating SLA with H2O2 for 1 hour) harvest the best improvement of differentiation of rBMSCs. Finally, the osteogenesis in beagle dogs was tested, and the h1SLA implants perform much better bone formation than SLA implants. These results indicate that the nanoscale modification of SLA titanium surface endowing nanostructures, roughness, and wettability could significantly improve the behaviors of bone mesenchymal stem cells and osteogenesis on the scaffold surface. These nanoscale modified SLA titanium scaffolds, fabricated in our study with enhanced cell affinity and osteogenesis, had great potential for implant dentistry.


Sign in / Sign up

Export Citation Format

Share Document