scholarly journals The central melanocortin system and human obesity

Author(s):  
Yongjie Yang ◽  
Yong Xu

Abstract The prevalence of obesity and the associated comorbidities highlight the importance of understanding the regulation of energy homeostasis. The central melanocortin system plays a critical role in controlling body weight balance. Melanocortin neurons sense and integrate the neuronal and hormonal signals, and then send regulatory projections, releasing anorexigenic or orexigenic melanocortin neuropeptides, to downstream neurons to regulate the food intake and energy expenditure. This review summarizes the latest progress in our understanding of the role of the melanocortin pathway in energy homeostasis. We also review the advances in the identification of human genetic variants that cause obesity via mechanisms that affect the central melanocortin system, which have provided rational targets for treatment of genetically susceptible patients.

2021 ◽  
Author(s):  
Gabriel Henrique Marques Gonçalves ◽  
Sabrina Mara Tristão ◽  
Rafaella Eduarda Volpi ◽  
Gislaine Almeida-Pereira ◽  
Beatriz de Carvalho Borges ◽  
...  

Leptin plays an important role in the protection against diet-induced obesity (DIO) by its actions in ventromedial hypothalamic (VMH) neurons. However, little is known about the intracellular mechanisms involved in these effects. To assess the role of the STAT3 and ERK2 signaling in neurons that express the steroidogenic factor 1 (SF1) in the VMH on energy homeostasis, we used cre-lox technology to generate male and female mice with specific disruption of STAT3 or ERK2 in SF1 neurons of the VMH. We demonstrated that the conditional knockout of STAT3 in SF1 neurons of the VMH did not affect body weight, food intake, energy expenditure and glucose homeostasis in animals on regular chow. However, when challenged with high-fat diet (HFD), loss of STAT3 in SF1 neurons caused a significant increase in body weight, food intake and energy efficiency that was more remarkable in females which also showed a decrease in energy expenditure. In contrast, deletion of ERK2 in SF1 neurons of VMH did not have any impact on energy homeostasis in both regular diet and HFD conditions. In conclusion, STAT3 but not ERK2 signaling in SF1 neurons of VMH plays a crucial role to protect against DIO in a sex-specific pattern.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 451
Author(s):  
Heike Münzberg ◽  
Prachi Singh ◽  
Steven B. Heymsfield ◽  
Sangho Yu ◽  
Christopher D. Morrison

The hormone leptin plays a critical role in energy homeostasis, although our overall understanding of acutely changing leptin levels still needs improvement. Several developments allow a fresh look at recent and early data on leptin action. This review highlights select recent publications that are relevant for understanding the role played by dynamic changes in circulating leptin levels. We further discuss the relevance for our current understanding of leptin signaling in central neuronal feeding and energy expenditure circuits and highlight cohesive and discrepant findings that need to be addressed in future studies to understand how leptin couples with physiological adaptations of food intake and energy expenditure.


2021 ◽  
Author(s):  
Gabriel Henrique Marques Gonçalves ◽  
Sabrina Mara Tristão ◽  
Rafaella Eduarda Volpi ◽  
Gislaine Almeida-Pereira ◽  
Beatriz de Carvalho Borges ◽  
...  

Leptin plays an important role in the protection against diet-induced obesity (DIO) by its actions in ventromedial hypothalamic (VMH) neurons. However, little is known about the intracellular mechanisms involved in these effects. To assess the role of the STAT3 and ERK2 signaling in neurons that express the steroidogenic factor 1 (SF1) in the VMH on energy homeostasis, we used cre-lox technology to generate male and female mice with specific disruption of STAT3 or ERK2 in SF1 neurons of the VMH. We demonstrated that the conditional knockout of STAT3 in SF1 neurons of the VMH did not affect body weight, food intake, energy expenditure and glucose homeostasis in animals on regular chow. However, when challenged with high-fat diet (HFD), loss of STAT3 in SF1 neurons caused a significant increase in body weight, food intake and energy efficiency that was more remarkable in females which also showed a decrease in energy expenditure. In contrast, deletion of ERK2 in SF1 neurons of VMH did not have any impact on energy homeostasis in both regular diet and HFD conditions. In conclusion, STAT3 but not ERK2 signaling in SF1 neurons of VMH plays a crucial role to protect against DIO in a sex-specific pattern.


1986 ◽  
Vol 251 (6) ◽  
pp. R1118-R1125
Author(s):  
T. J. Bartness ◽  
C. J. Billington ◽  
A. S. Levine ◽  
J. E. Morley ◽  
N. E. Rowland ◽  
...  

The role of insulin in metabolic efficiency (ME, i.e., efficiency of body wt gain) was examined under conditions of maximal energy expenditure in control and diabetic rats. Long-lasting insulin was administered using a protocol that did not affect food intake and increased ME in both groups. Half the animals were injected chronically with norepinephrine (NE). NE alone in controls decreased body weight and ME and increased brown adipose tissue (BAT) growth, thermogenic potential [cytochrome c oxidase activity (COA)], and lipoprotein lipases (LPL) activity; however, in diabetics, body weight, ME, and food intake all decreased and only BAT LPL activity and DNA content increased. The combination of NE and insulin increased BAT protein and COA in diabetics; in controls, all BAT measures were further increased and ME was intermediate to that of either treatment alone. Cold exposure decreased body weight and ME, increased food intake and qualitatively produced similar increases in BAT growth, COA, and LPL activity in both controls and diabetics. In diabetics, combined cold exposure and insulin did not affect the increase in BAT growth or LPL activity resulting from either treatment alone, but in controls this combination decreased BAT growth and COA. It is concluded that, even under conditions of maximal energy expenditure, both extremes of basal insulin status result in decreased BAT growth and thermogenic potential, but have opposite effects on ME.


PLoS ONE ◽  
2009 ◽  
Vol 4 (12) ◽  
pp. e8488 ◽  
Author(s):  
Shu Lin ◽  
Yan-Chuan Shi ◽  
Ernie Yulyaningsih ◽  
Aygul Aljanova ◽  
Lei Zhang ◽  
...  

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Balyssa B Bell ◽  
Donald A Morgan ◽  
Mohamed Rouabhi ◽  
Kamal Rahmouni

The adipocyte-derived hormone leptin has a well-established role in the regulation of energy homeostasis, acting in the brain to decrease food intake and promote energy expenditure. Additionally, leptin increases regional sympathetic nerve activity (SNA) and arterial pressure. Multiple intracellular signaling cascades are activated by leptin via its long form receptor (LRb), but the specific roles of these pathways in mediating leptin’s various effects have not been fully understood. Recent evidences suggest that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in mediating leptin action. To determine the contribution of mTORC1 to the metabolic and cardiovascular effects of leptin, we generated conditional knockout mice that lack the critical mTORC1 subunit, Raptor, specifically in LRb-expressing cells (LRb Cre /Raptor fl/fl ). Interestingly, body weight was comparable between LRb Cre /Raptor fl/fl mice and controls (29.6±0.8 g vs 31.0±0.8g at 14 weeks of age). Moreover, leptin treatment (1μg/g bw, intraperitoneally, twice daily for 4 days) led to a similar decrease in food intake (-1.6±0.8 g in LRb Cre /Raptor fl/fl mice vs -1.1±1.7 g in controls) and body weight (-5.9±0.8% vs -5.7±0.7%) in both groups. Next, we measured arterial pressure using radiotelemetry at baseline and in response to 2 μg intracerebroventricular (ICV) leptin. Baseline mean arterial pressure (MAP) was comparable between LRb Cre /Raptor fl/fl mice (108±9 mmHg) and controls (103±7 mmHg). However, ICV leptin significantly increased MAP in control mice (30±14 mmHg), but not in LRb Cre /Raptor fl/fl mice (1±9 mmHg, P<0.05 vs controls). The same pattern was observed for systolic and diastolic arterial pressure. Consistent with leptin’s action on MAP, we observed a significant increase in renal SNA in response to ICV leptin in control littermates (106±20%) that was absent in LRb Cre /Raptor fl/fl mice (-28±11%, P<0.05 vs controls) as determined by multifiber sympathetic nerve recordings. Our data suggest a critical role for mTORC1 signaling in mediating the cardiovascular sympathetic but not the metabolic actions of leptin, a dissociation that may have important implications for obesity-associated hypertension.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1817-1826 ◽  
Author(s):  
Wenying Quan ◽  
Hyun-Kyong Kim ◽  
Eun-Yi Moon ◽  
Su Sung Kim ◽  
Cheol Soo Choi ◽  
...  

Autophagy is a catabolic cellular process involving the degradation of the cell's own components. Although the role of autophagy of diverse tissues in body metabolism has been investigated, the importance of autophagy in hypothalamic proopiomelanocortin (POMC) neurons, key regulators of energy balance, has not been addressed. The role of autophagy in leptin sensitivity that is critical for the control of body weight and appetite has also not been investigated. We produced mice with specific deletion of autophagy-related 7 (Atg7), an essential autophagy gene, in hypothalamic POMC neurons (Atg7ΔPOMC mice). Atg7 expression was deficient in the arcuate nucleus of the hypothalamus of Atg7ΔPOMC mice. p62, a specific substrate of autophagy, accumulated in the hypothalamus of Atg7ΔPOMC mice, which colocalized with ubiquitin. Atg7ΔPOMC mice had increased body weight due to increased food intake and decreased energy expenditure. Atg7ΔPOMC mice were not more prone to diet-induced obesity compared with control mice but more susceptible to hyperglycemia after high-fat diet. The ability of leptin to suppress fasting-elicited hyperphagia and weight gain during refeeding was attenuated in Atg7ΔPOMC mice. Deficient autophagy did not significantly affect POMC neuron number but impaired leptin-induced signal transducer and activation of transcription 3 activation. Our findings indicate a critical role for autophagy of POMC neurons in the control of energy homeostasis and leptin signaling.


2019 ◽  
Vol 3 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Sunil K Panigrahi ◽  
Kana Meece ◽  
Sharon L Wardlaw

Abstract The hypothalamic melanocortin system composed of proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons plays a key role in maintaining energy homeostasis. The POMC-derived peptides, α-MSH and β-EP, have distinct roles in this process. α-MSH inhibits food intake, whereas β-EP, an endogenous opioid, can inhibit POMC neurons and stimulate food intake. A mouse model was used to examine the effects of opioid antagonism with naltrexone (NTX) on Pomc and Agrp gene expression and POMC peptide processing in the hypothalamus in conjunction with changes in energy balance. There were clear stimulatory effects of NTX on hypothalamic Pomc in mice receiving low- and high-fat diets, yet only transient decreases in food intake and body weight gain were noted. The effects on Pomc expression were accompanied by an increase in POMC prohormone levels and a decrease in levels of the processed peptides α-MSH and β-EP. Arcuate expression of the POMC processing enzymes Pcsk1, Pcsk2, and Cpe was not altered by NTX, but expression of Prcp, an enzyme that inactivates α-MSH, increased after NTX exposure. NTX exposure also stimulated hypothalamic Agrp expression, but the effects of NTX on energy balance were not enhanced in Agrp-null mice. Despite clear stimulatory effects of NTX on Pomc expression in the hypothalamus, only modest transient decreases in food intake and body weight were seen. Effects of NTX on POMC processing, and possibly α-MSH inactivation, as well as stimulatory effects on AgRP neurons could mitigate the effects of NTX on energy balance.


Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 642-650 ◽  
Author(s):  
Ignasi Canals ◽  
María C. Carmona ◽  
Marta Amigó ◽  
Albert Barbera ◽  
Analía Bortolozzi ◽  
...  

Sodium tungstate is a novel agent in the treatment of obesity. In diet-induced obese rats, it is able to reduce body weight gain by increasing energy expenditure. This study evaluated the role of leptin, a key regulator of energy homeostasis, in the tungstate antiobesity effect. Leptin receptor-deficient Zucker fa/fa rats and leptin-deficient ob/ob mice were treated with tungstate. In lean animals, tungstate administration reduced body weight gain and food intake and increased energy expenditure. However, in animals with deficiencies in the leptin system, treatment did not modify these parameters. In ob/ob mice in which leptin deficiency was restored through adipose tissue transplantation, treatment restored the tungstate-induced body weight gain and food intake reduction as well as energy expenditure increase. Furthermore, in animals in which tungstate administration increased energy expenditure, changes in the expression of key genes involved in brown adipose tissue thermogenesis were detected. Finally, the gene expression of the hypothalamic neuropeptides, Npy, Agrp, and Cart, involved in the leptin regulation of energy homeostasis, was also modified by tungstate in a leptin-dependent manner. In summary, the results indicate that the effectiveness of tungstate in reducing body weight gain is completely dependent on a functional leptin system. Anti-obesity activity of tungstate is due to an increase in thermogenesis and a reduction in food intake and depends entirely on a functional leptin system.


2020 ◽  
pp. jcs.247742
Author(s):  
Jingnan Liu ◽  
Xiaobo Wang ◽  
Rui Ma ◽  
Tianxia Li ◽  
Gongbo Guo ◽  
...  

Expression of synphilin-1 in neurons induces hyperphagia and obesity in a Drosophila model. However, the molecular pathways underlying synphilin-1-linked obesity remain unclear. Here, the Drosophila models and genetic tools were used to study the synphilin-1-linked pathways in energy balance by combining molecular biology and pharmacological approaches. We found that expression of human synphilin-1 in flies increased AMPK phosphorylation at Thr172 compared with non-transgenic flies. Knockdown of AMPK reduced AMPK phosphorylation and food intake in non-transgenic flies, and further suppressed synphilin-1-induced AMPK phosphorylation, hyperphagia, fat storage, and body weight gain in transgenic flies. Expression of constitutively activated AMPK significantly increased food intake and body weight gain in non-transgenic flies, but it did not alter food intake in the synphilin-1 transgenic flies. In contrast, expression of dominant-negative AMPK reduced food intake in both non-transgenic and synphilin-1 transgenic flies. Treatment with STO609 also suppressed synphilin-1-induced AMPK phosphorylation, hyperphagia and body weight gain. These results demonstrated that the AMPKsignaling pathway plays a critical role in synphilin-1-induced hyperphagia and obesity. These findings provide new insights into the mechanisms of synphilin-1 controlled energy homeostasis.


Sign in / Sign up

Export Citation Format

Share Document