Threshold for Glucose-Stimulated Insulin Secretion in Pancreatic Islets of Genetically Obese (ob/ob) Mice is Abnormally Low

1993 ◽  
Vol 123 (9) ◽  
pp. 1567-1574 ◽  
Author(s):  
Neng-Guin Chen ◽  
Twylla M. Tassava ◽  
Dale R. Romsos
2010 ◽  
Vol 105 (9) ◽  
pp. 1311-1319 ◽  
Author(s):  
Ya-Fan Chiang ◽  
Huey-Mei Shaw ◽  
Mei-Fang Yang ◽  
Chih-Yang Huang ◽  
Cheng-Hsien Hsieh ◽  
...  

We previously reported that, in rodents, a diet with a high oxidised frying oil (OFO) content leads to glucose intolerance associated with a reduction in insulin secretion. The present study aimed at investigating the impairment of pancreatic islets caused by dietary OFO. C57BL/6J mice were divided into three groups to receive a low-fat basal diet containing 5 g/100 g of fresh soyabean oil (LF group) or a high-fat diet containing 20 g/100 g of either fresh soyabean oil (HF group) or OFO (HO group). After 8 weeks, mice in the HO group showed glucose intolerance and hypoinsulinaemia, and their islets showed impaired glucose-stimulated insulin secretion (P < 0·05; HO group v. LF and HF groups). Significantly higher oxidative stress and a lower mitochondrial membrane potential were observed in the islets in the HO group compared with the LF and HF groups. Immunoblots showed that the reduction in insulin levels in HO islets was associated with activation of the c-Jun NH2-terminal kinase and a reduction in levels of pancreatic and duodenal homeobox factor-1. In a second study, when dietary OFO-induced tissue vitamin E depletion was prevented by large-dose vitamin E supplementation (500 IU(1·06 mmol all-rac-α-tocopherol acetate)/kg diet; HO+E group), the OFO-mediated reduction in islet size and impairment of glucose tolerance and insulin secretion were significantly attenuated (P < 0·05; HO group v. HO+E group). We conclude that a high level of dietary OFO ingestion impairs glucose metabolism by causing oxidative damage and compromising insulin secretion in pancreatic islets, and that these effects can be prevented by vitamin E supplementation.


2007 ◽  
Vol 193 (3) ◽  
pp. 367-381 ◽  
Author(s):  
Anthony J Weinhaus ◽  
Laurence E Stout ◽  
Nicholas V Bhagroo ◽  
T Clark Brelje ◽  
Robert L Sorenson

Glucokinase activity is increased in pancreatic islets during pregnancy and in vitro by prolactin (PRL). The underlying mechanisms that lead to increased glucokinase have not been resolved. Since glucose itself regulates glucokinase activity in β-cells, it was unclear whether the lactogen effects are direct or occur through changes in glucose metabolism. To clarify the roles of glucose metabolism in this process, we examined the interactions between glucose and PRL on glucose metabolism, insulin secretion, and glucokinase expression in insulin 1 (INS-1) cells and rat islets. Although the PRL-induced changes were more pronounced after culture at higher glucose concentrations, an increase in glucose metabolism, insulin secretion, and glucokinase expression occurred even in the absence of glucose. The presence of comparable levels of insulin secretion at similar rates of glucose metabolism from both control and PRL-treated INS-1 cells suggests the PRL-induced increase in glucose metabolism is responsible for the increase in insulin secretion. Similarly, increases in other known PRL responsive genes (e.g. the PRL receptor, glucose transporter-2, and insulin) were also detected after culture without glucose. We show that the upstream glucokinase promoter contains multiple STAT5 binding sequences with increased binding in response to PRL. Corresponding increases in glucokinase mRNA and protein synthesis were also detected. This suggests the PRL-induced increase in glucokinase mRNA and its translation are sufficient to account for the elevated glucokinase activity in β-cells with lactogens. Importantly, the increase in islet glucokinase observed with PRL is in line with that observed in islets during pregnancy.


2020 ◽  
Vol 117 (45) ◽  
pp. 28307-28315
Author(s):  
Baile Wang ◽  
Huige Lin ◽  
Xiaomu Li ◽  
Wenqi Lu ◽  
Jae Bum Kim ◽  
...  

Filamentous actin (F-actin) cytoskeletal remodeling is critical for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells, and its dysregulation causes type 2 diabetes. The adaptor protein APPL1 promotes first-phase GSIS by up-regulating solubleN-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein expression. However, whether APPL2 (a close homology of APPL1 with the same domain organization) plays a role in β-cell functions is unknown. Here, we show that APPL2 enhances GSIS by promoting F-actin remodeling via the small GTPase Rac1 in pancreatic β-cells. β-cell specific abrogation of APPL2 impaired GSIS, leading to glucose intolerance in mice. APPL2 deficiency largely abolished glucose-induced first- and second-phase insulin secretion in pancreatic islets. Real-time live-cell imaging and phalloidin staining revealed that APPL2 deficiency abolished glucose-induced F-actin depolymerization in pancreatic islets. Likewise, knockdown of APPL2 expression impaired glucose-stimulated F-actin depolymerization and subsequent insulin secretion in INS-1E cells, which were attributable to the impairment of Ras-related C3 botulinum toxin substrate 1 (Rac1) activation. Treatment with the F-actin depolymerization chemical compounds or overexpression of gelsolin (a F-actin remodeling protein) rescued APPL2 deficiency-induced defective GSIS. In addition, APPL2 interacted with Rac GTPase activating protein 1 (RacGAP1) in a glucose-dependent manner via the bin/amphiphysin/rvs-pleckstrin homology (BAR-PH) domain of APPL2 in INS-1E cells and HEK293 cells. Concomitant knockdown of RacGAP1 expression reverted APPL2 deficiency-induced defective GSIS, F-actin remodeling, and Rac1 activation in INS-1E cells. Our data indicate that APPL2 interacts with RacGAP1 and suppresses its negative action on Rac1 activity and F-actin depolymerization thereby enhancing GSIS in pancreatic β-cells.


2019 ◽  
Vol 20 (8) ◽  
pp. 1995 ◽  
Author(s):  
Hsin-Jung Ho ◽  
Hitoshi Shirakawa ◽  
Keisukei Hirahara ◽  
Hideyuki Sone ◽  
Shin Kamiyama ◽  
...  

Vitamin K2 is indispensable for blood coagulation and bone metabolism. Menaquinone-4 (MK-4) is the predominant homolog of vitamin K2, which is present in large amounts in the pancreas, although its function is unclear. Meanwhile, β-cell dysfunction following insulin secretion has been found to decrease in patients with type 2 diabetes mellitus. To elucidate the physiological function of MK-4 in pancreatic β-cells, we studied the effects of MK-4 treatment on isolated mouse pancreatic islets and rat INS-1 cells. Glucose-stimulated insulin secretion significantly increased in isolated islets and INS-1 cells treated with MK-4. It was further clarified that MK-4 enhanced cAMP levels, accompanied by the regulation of the exchange protein directly activated by the cAMP 2 (Epac2)-dependent pathway but not the protein kinase A (PKA)-dependent pathway. A novel function of MK-4 on glucose-stimulated insulin secretion was found, suggesting that MK-4 might act as a potent amplifier of the incretin effect. This study therefore presents a novel potential therapeutic approach for impaired insulinotropic effects.


Endocrinology ◽  
2011 ◽  
Vol 152 (10) ◽  
pp. 3628-3637 ◽  
Author(s):  
R. Gonzalez ◽  
R. L. S. Perry ◽  
X. Gao ◽  
M. P. Gaidhu ◽  
R. G. Tsushima ◽  
...  

Nesfatin-1 is a recently discovered anorexigen, and we first reported nesfatin-like immunoreactivity in the pancreatic β-cells. The aim of this study was to characterize the effects of nesfatin-1 on whole-body energy homeostasis, insulin secretion, and glycemia. The in vivo effects of continuous peripheral delivery of nesfatin-1 using osmotic minipumps on food intake and substrate partitioning were examined in ad libitum-fed male Fischer 344 rats. The effects of nesfatin-1 on glucose-stimulated insulin secretion (GSIS) were examined in isolated pancreatic islets. L6 skeletal muscle cells and isolated rat adipocytes were used to assess the effects of nesfatin-1 on basal and insulin-mediated glucose uptake as well as on major steps of insulin signaling in these cells. Nesfatin-1 reduced cumulative food intake and increased spontaneous physical activity, whole-body fat oxidation, and carnitine palmitoyltransferase I mRNA expression in brown adipose tissue but did not affect uncoupling protein 1 mRNA in the brown adipose tissue. Nesfatin-1 significantly enhanced GSIS in vivo during an oral glucose tolerance test and improved insulin sensitivity. Although insulin-stimulated glucose uptake in L6 muscle cells was inhibited by nesfatin-1 pretreatment, basal and insulin-induced glucose uptake in adipocytes from nesfatin-1-treated rats was significantly increased. In agreement with our in vivo results, nesfatin-1 enhanced GSIS from isolated pancreatic islets at both normal (5.6 mm) and high (16.7 mm), but not at low (2 mm), glucose concentrations. Furthermore, nesfatin-1/nucleobindin 2 release from rat pancreatic islets was stimulated by glucose. Collectively, our data indicate that glucose-responsive nesfatin-1 regulates insulin secretion, glucose homeostasis, and whole-body energy balance in rats.


Endocrinology ◽  
2007 ◽  
Vol 148 (12) ◽  
pp. 5716-5723 ◽  
Author(s):  
Yumi Imai ◽  
Hiral R. Patel ◽  
Evan J. Hawkins ◽  
Nicolai M. Doliba ◽  
Franz M. Matschinsky ◽  
...  

Neuropeptide Y (NPY), whose role in appetite regulation is well known, is also expressed in pancreatic islets. Although previous studies indicated that application of NPY to pancreatic islets inhibits insulin secretion, its physiological role in the regulation of insulin secretion is not fully understood. We hypothesized that NPY in islets tonically suppresses insulin secretion and the reduction of islet NPY increases insulin secretion. To address the hypothesis, islet function of NPY-deficient mice was analyzed. Although there was little change in glucose homeostasis in vivo, pancreatic islets from NPY-deficient mice had higher basal insulin secretion (1.5 times), glucose-stimulated insulin secretion (1.5 times), and islet mass (1.7 times), compared with wild-type mouse. Next we sought to determine whether the expression of NPY and Y1 receptor in islets was altered in hyperinsulinemia associated with obesity. Islets from C57BL/6J mice on a high-fat diet had 1.9 times higher basal insulin secretion and 2.4 times higher glucose-stimulated insulin secretion than control mice, indicating islet adaptation to obesity. Expression of NPY and Y1 receptor mRNA levels was decreased by 70 and 64%, respectively, in high-fat diet islets, compared with controls. NPY and Y1 receptor in islets were also reduced by 91 and 80%, respectively, in leptin-deficient ob/ob mice that showed marked hyperinsulinemia. Together these results suggest that endogenous NPY tonically inhibits insulin secretion from islets and a reduction of islet NPY may serve as one of the mechanisms to increase insulin secretion when islets compensate for insulin resistance associated with obesity.


Sign in / Sign up

Export Citation Format

Share Document