scholarly journals From the Entorhinal Region via the Prosubiculum to the Dentate Fascia: Alzheimer Disease-Related Neurofibrillary Changes in the Temporal Allocortex

2020 ◽  
Vol 79 (2) ◽  
pp. 163-175 ◽  
Author(s):  
Heiko Braak ◽  
Kelly Del Tredici

Abstract The pathological process underlying Alzheimer disease (AD) unfolds predominantly in the cerebral cortex with the gradual appearance and regional progression of abnormal tau. Intraneuronal tau pathology progresses from the temporal transentorhinal and entorhinal regions into neocortical fields/areas of the temporal allocortex. Here, based on 95 cases staged for AD-related neurofibrillary changes, we propose an ordered progression of abnormal tau in the temporal allocortex. Initially, abnormal tau was limited to distal dendritic segments followed by tau in cell bodies of projection neurons of the transentorhinal/entorhinal layer pre-α. Next, abnormal distal dendrites accumulated in the prosubiculum and extended into the CA1 stratum oriens and lacunosum. Subsequently, altered dendrites developed in the CA2/CA3 stratum oriens and stratum lacunosum-moleculare, combined with tau-positive thorny excrescences of CA3/CA4 mossy cells. Finally, granule cells of the dentate fascia became involved. Such a progression might recapitulate a sequence of transsynaptic spreading of abnormal tau from 1 projection neuron to the next: From pre-α cells to distal dendrites in the prosubiculum and CA1; then, from CA1 or prosubicular pyramids to CA2 principal cells and CA3/CA4 mossy cells; finally, from CA4 mossy cells to dentate granule cells. The lesions are additive: Those from the previous steps persist.

2021 ◽  
Author(s):  
AKSHAY - GUPTA ◽  
Archana Proddutur ◽  
Fatima S Elgammal ◽  
Vijayalakshmi Santhakumar

Progressive physiological changes in the hippocampal dentate gyrus circuits following traumatic brain injury contribute to temporal evolution of neurological sequelae. Although early posttraumatic changes in dentate synaptic and extrasynaptic GABA currents have been reported, whether they evolve over time and remain distinct between the two projection neuron classes, granule cells and semilunar granule cells, has not been evaluated. We examined changes in tonic GABA currents and spontaneous inhibitory postsynaptic currents (sIPSCs) and in dentate projection neurons one and three month after moderate concussive fluid percussion injury (FPI) in adolescent rats. Granule cell tonic GABA current amplitude remained elevated up to one month after FPI, but decreased to levels comparable to age-matched controls by three months postinjury. Granule cell sIPSC frequency, which we previously reported to be increased one week after FPI, remained higher than in age-matched controls at one month and was significantly reduced three months after FPI. In contrast to the early decrease, tonic GABA current amplitude and sIPSC frequency in semilunar granule cell was not different from controls three months after FPI. The switch in granule cell inhibitory inputs from early increase to subsequent decrease could contribute to the delayed emergence of cognitive deficits and seizure susceptibility after brain injury.


2009 ◽  
Vol 101 (2) ◽  
pp. 591-602 ◽  
Author(s):  
Hiraku Mochida ◽  
Gilles Fortin ◽  
Jean Champagnat ◽  
Joel C. Glover

To better characterize the emergence of spontaneous neuronal activity in the developing hindbrain, spontaneous activity was recorded optically from defined projection neuron populations in isolated preparations of the brain stem of the chicken embryo. Ipsilaterally projecting reticulospinal (RS) neurons and several groups of vestibuloocular (VO) neurons were labeled retrogradely with Calcium Green-1 dextran amine and spontaneous calcium transients were recorded using a charge-coupled-device camera mounted on a fluorescence microscope. Simultaneous extracellular recordings were made from one of the trigeminal motor nerves (nV) to register the occurrence of spontaneous synchronous bursts of activity. Two types of spontaneous activity were observed: synchronous events (SEs), which occurred in register with spontaneous bursts in nV once every few minutes and were tetrodotoxin (TTX) dependent, and asynchronous events (AEs), which occurred in the intervals between SEs and were TTX resistant. AEs occurred developmentally before SEs and were in general smaller and more variable in amplitude than SEs. SEs appeared at the same stage as nV bursts early on embryonic day 4, first in RS neurons and then in VO neurons. All RS neurons participated equally in SEs from the outset, whereas different subpopulations of VO neurons participated differentially, both in terms of the proportion of neurons that exhibited SEs, the fidelity with which the SEs in individual neurons followed the nV bursts, and the developmental stage at which SEs appeared and matured. The results show that spontaneous activity is expressed heterogeneously among hindbrain projection neuron populations, suggesting its differential involvement in the formation of different functional neuronal circuits.


2021 ◽  
Author(s):  
Lior Matityahu ◽  
Jeffrey Malgady ◽  
Meital Schirelman ◽  
Yvonne Johansson ◽  
Jennifer Wilking ◽  
...  

Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can 1) disynaptically inhibit SPNs by activating α4β2 nicotinic acetylcholine receptors (nAChRs) on various GINs and 2) directly modulate corticostriatal synaptic strength via pre-synaptic α7 nAChR receptors. Measurements of the disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feed-forward inhibition. Moreover, functional nAChRs are also present on populations of GINs that do not respond to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices we show that upon synchronous optogenetic activation of corticostriatal projections, blockade of α7 nAChRs delayed SPN spikes, whereas blockade of α4β2 nAChRs advanced SPN spikes and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond to phasic CIN activation. In particular, the observed spike-advancement caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, and a parallel hyperpolarization of PV-FSIs. Taken together, we describe opposing roles for tonic (as opposed to phasic) engagement of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs both sharpens the temporal fidelity of corticostriatal signaling via pre-synaptic α7 nAChRs and maintains a GABAergic brake on cortically-driven striatal output, processes that may shape SPN spike timing, striatal processing and synaptic plasticity.


1994 ◽  
Vol 72 (5) ◽  
pp. 2167-2180 ◽  
Author(s):  
H. E. Scharfman

1. Simultaneous intracellular recordings of area CA3 pyramidal cells and dentate hilar “mossy” cells were made in rat hippocampal slices to test the hypothesis that area CA3 pyramidal cells excite mossy cells monosynaptically. Mossy cells and pyramidal cells were differentiated by location and electrophysiological characteristics. When cells were impaled near the border of area CA3 and the hilus, their identity was confirmed morphologically after injection of the marker Neurobiotin. 2. Evidence for monosynaptic excitation of a mossy cell by a pyramidal cell was obtained in 7 of 481 (1.4%) paired recordings. In these cases, a pyramidal cell action potential was followed immediately by a 0.40 to 6.75 (mean, 2.26) mV depolarization in the simultaneously recorded mossy cell (mossy cell membrane potentials, -60 to -70 mV). Given that pyramidal cells used an excitatory amino acid as a neurotransmitter (Cotman and Nadler 1987; Ottersen and Storm-Mathisen 1987) and recordings were made in the presence of the GABAA receptor antagonist bicuculline (25 microM), it is likely that the depolarizations were unitary excitatory postsynaptic potentials (EPSPs). 3. Unitary EPSPs of mossy cells were prone to apparent “failure.” The probability of failure was extremely high (up to 0.72; mean = 0.48) if the effects of all presynaptic action potentials were examined, including action potentials triggered inadvertently during other spontaneous EPSPs of the mossy cell. Probability of failure was relatively low (as low as 0; mean = 0.24) if action potentials that occurred during spontaneous activity of the mossy cell were excluded. These data suggest that unitary EPSPs produced by pyramidal cells are strongly affected by concurrent synaptic inputs to the mossy cell. 4. Unitary EPSPs were not clearly affected by manipulation of the mossy cell's membrane potential. This is consistent with the recent report that area CA3 pyramidal cells innervate distal dendrites of mossy cells (Kunkel et al. 1993). Such a distal location also may contribute to the high incidence of apparent failures. 5. Characteristics of unitary EPSPs generated by pyramidal cells were compared with the properties of the unitary EPSPs produced by granule cells. In two slices, pyramidal cell and granule cell inputs to the same mossy cell were compared. In other slices, inputs to different mossy cells were compared. In all experiments, unitary EPSPs produced by granule cells were larger in amplitude but similar in time course to unitary EPSPs produced by pyramidal cells. Probability of failure was lower and paired-pulse facilitation more common among EPSPs triggered by granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 68 (5) ◽  
pp. 1548-1557 ◽  
Author(s):  
U. Misgeld ◽  
M. Bijak ◽  
H. Brunner ◽  
K. Dembowsky

1. The occurrence of potassium-dependent inhibitory postsynaptic potentials (K-IPSPs) in relation to burst discharges induced by 4-aminopyridine (4-AP; 30 microM) was studied in CA3, granule and hilar neurons in guinea pig hippocampal slices with the use of paired extra- and/or intracellular recording. 2. Slow small (2-5 mV) and large (up to 30 mV) K-IPSPs were observed in CA3, granule and in some hilar neurons during 4-AP applications in the presence of blockers for fast synaptic transmission, picrotoxin (50 microM), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 5-10 microM). Amplitudes of K-IPSPs were linearly related to voltage, and they reversed in sign close to -100 mV, as expected for synaptic potentials generated by an increase in K-conductance. 3. In CA3 neurons, 4-AP applied in the presence of picrotoxin elicited burst discharges and K-IPSPs. CNQX blocked the burst discharge activity and increased the amplitude of K-IPSPs. 4. In granule cells, 4-AP applied in the presence of picrotoxin elicited K-IPSPs and only inconsistently small excitatory postsynaptic potentials (EPSPs). The EPSPs were blocked by CNQX, but CNQX application did not affect the K-IPSPs. However, in granule cells it could be observed that blockade of Cl-inhibition by picrotoxin in the presence of CNQX increased the amplitude of K-IPSPs. 5. In hilar neurons, 4-AP applied in the presence of picrotoxin elicited mainly burst discharges. CNQX blocked the burst discharges only in a few cells. In most hilar neurons K-IPSPs were observed at the beginning of the 4-AP effect, but subsequently K-IPSPs were replaced by burst discharges. 6. To determine the type of cells that burst in picrotoxin and 4-AP, neurons were stained intracellularly with horseradish peroxidase. Neurons stained in the granule cell layer did not burst and were morphologically identified as granule cells. Neurons stained in the hilar region burst and were nonpyramidal, nongranule cells. Bursting cells stained in the CA3 area were all pyramidal cells. 7. The hilar neurons varied considerably in size and dendritic organization. They could be classified as aspiny and spiny cells, the latter including mossy cells. 8. We conclude that K-dependent inhibition may explain the long-lasting IPSPs observed in in vivo recordings from hippocampal cells. In a hippocampal lamella, burst discharge activity of hilar neurons including presumed excitatory mossy cells is associated with inhibition of granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Vol 121 (3) ◽  
pp. 950-972 ◽  
Author(s):  
Dawn M. Blitz ◽  
Andrew E. Christie ◽  
Aaron P. Cook ◽  
Patsy S. Dickinson ◽  
Michael P. Nusbaum

Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly1-SIFamide) immunoreactivity (Gly1-SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly1-SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly1-SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly1-SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly1-SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (>30 s) MCN5 stimulation activated a Gly1-SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly1-SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly1-SIFamide. MCN5 and Gly1-SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.


2017 ◽  
Vol 118 (5) ◽  
pp. 2806-2818 ◽  
Author(s):  
Rachel S. White ◽  
Robert M. Spencer ◽  
Michael P. Nusbaum ◽  
Dawn M. Blitz

Sensory feedback influences motor circuits and/or their projection neuron inputs to adjust ongoing motor activity, but its efficacy varies. Currently, less is known about regulation of sensory feedback onto projection neurons that control downstream motor circuits than about sensory regulation of the motor circuit neurons themselves. In this study, we tested whether sensory feedback onto projection neurons is sensitive only to activation of a motor system, or also to the modulatory state underlying that activation, using the crab Cancer borealis stomatogastric nervous system. We examined how proprioceptor neurons (gastropyloric receptors, GPRs) influence the gastric mill (chewing) circuit neurons and the projection neurons (MCN1, CPN2) that drive the gastric mill rhythm. During gastric mill rhythms triggered by the mechanosensory ventral cardiac neurons (VCNs), GPR was shown previously to influence gastric mill circuit neurons, but its excitation of MCN1/CPN2 was absent. In this study, we tested whether GPR effects on MCN1/CPN2 are also absent during gastric mill rhythms triggered by the peptidergic postoesophageal commissure (POC) neurons. The VCN and POC pathways both trigger lasting MCN1/CPN2 activation, but their distinct influence on circuit feedback to these neurons produces different gastric mill motor patterns. We show that GPR excites MCN1 and CPN2 during the POC-gastric mill rhythm, altering their firing rates and activity patterns. This action changes both phases of the POC-gastric mill rhythm, whereas GPR only alters one phase of the VCN-gastric mill rhythm. Thus sensory feedback to projection neurons can be gated as a function of the modulatory state of an active motor system, not simply switched on/off with the onset of motor activity. NEW & NOTEWORTHY Sensory feedback influences motor systems (i.e., motor circuits and their projection neuron inputs). However, whether regulation of sensory feedback to these projection neurons is consistent across different versions of the same motor pattern driven by the same motor system was not known. We found that gating of sensory feedback to projection neurons is determined by the modulatory state of the motor system, and not simply by whether the system is active or inactive.


Neuron ◽  
2017 ◽  
Vol 93 (3) ◽  
pp. 677-690.e5 ◽  
Author(s):  
Douglas GoodSmith ◽  
Xiaojing Chen ◽  
Cheng Wang ◽  
Sang Hoon Kim ◽  
Hongjun Song ◽  
...  

2015 ◽  
Vol 114 (1) ◽  
pp. 284-300 ◽  
Author(s):  
Tianhe C. Zhang ◽  
John J. Janik ◽  
Ryan V. Peters ◽  
Gang Chen ◽  
Ru-Rong Ji ◽  
...  

Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry.


Sign in / Sign up

Export Citation Format

Share Document