scholarly journals Root phenotypes of young wheat plants grown in controlled environments show inconsistent correlation with mature root traits in the field

2020 ◽  
Vol 71 (16) ◽  
pp. 4751-4762 ◽  
Author(s):  
Sarah M Rich ◽  
Jack Christopher ◽  
Richard Richards ◽  
Michelle Watt

Abstract Using a field to lab approach, mature deep-rooting traits in wheat were correlated to root phenotypes measured on young plants from controlled conditions. Mature deep-rooting root traits of 20 wheat genotypes at maturity were established via coring in three field trials across 2 years. Field traits were correlated to phenotypes expressed by the 20 genotypes after growth in four commonly used lab screens: (i) soil tubes for root emergence, elongation, length, and branching at four ages to 34 days after sowing (DAS); (ii) paper pouches 7 DAS and (iii) agar chambers for primary root (PR) number and angles at 8 DAS; and (iv) soil baskets for PR and nodal root (NR) number and angle at 42 DAS. Correlations between lab and field root traits (r2=0.45–0.73) were highly inconsistent, with many traits uncorrelated and no one lab phenotype correlating similarly across three field experiments. Phenotypes most positively associated with deep field roots were: longest PR and NR axiles from the soil tube screen at 20 DAS; and narrow PR angle and wide NR angle from soil baskets at 42 DAS. Paper and agar PR angles were positively and significantly correlated to each other, but only wide outer PRs in the paper screen correlated positively to shallower field root traits. NR phenotypes in soil baskets were not predicted by PR phenotypes in any screen, suggesting independent developmental controls and value in measuring both root types in lab screens. Strong temporal and edaphic effects on mature root traits, and a lack of understanding of root trait changes during plant development, are major challenges in creating controlled-environment root screens for mature root traits in the field.

Author(s):  
Anna Langstroff ◽  
Marc C. Heuermann ◽  
Andreas Stahl ◽  
Astrid Junker

AbstractRising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable the collection of traits that are not easy to measure under field conditions and the assessment of a plant‘s phenotype under repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of climate-adapted crops.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 621c-621
Author(s):  
Mark W. Farnham ◽  
Anthony P. Keinath

Wirestem, caused by Rhizoctonia solani, is a destructive disease of B. oleracea cole crops and is distributed worldwide. Effective means of wirestem control include soil fumigation and soil treatment with pentachloronitrobenzene, which are increasingly expensive and environmentally undesirable. As a consequence, alternative methods of wirestem control are needed. Thus, we conducted controlled-environment and field experiments to develop methodology to study host-plant resistance and possibly biocontrol agents as potential wirestem control alternatives. Seedlings of 12 cultivars (three each of cauliflower, broccoli, cabbage, and collard) at the four- to five-leaf stage were transplanted to trays in a growth room or into field plots and covered with soil infested with R. solani AG-4 sclerotia. Disease progression (percent of plants healthy, diseased, and dead) was observed every 3 days for 2 weeks in the controlled environments and for 3 weeks in field trials. At the end of two studies, plants were dug with roots intact and rated for disease using a 1 to 10 scale. In all trials, percent healthy plants stabilized at about 2 weeks after inoculation. Incidence of wirestem disease varied among experiments ranging from 70% to 100% diseased, dead plants in controlled environments, and from 51% to 88% and 33% 65% in the two respective field studies. Disease rating was always negatively and significantly correlated with percent healthy plants. Although a genotype × environment interaction was observed, some cultivars (i.e., `Snowcone' and `Snowcrown' cauliflowers) were always severely diseased, while others (i.e., `Viking' broccoli and `Blue Max' collard) were consistently among the least diseased.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 789
Author(s):  
Klára Kosová ◽  
Miroslav Klíma ◽  
Ilja Tom Prášil ◽  
Pavel Vítámvás

Low temperatures in the autumn induce enhanced expression/relative accumulation of several cold-inducible transcripts/proteins with protective functions from Late-embryogenesis-abundant (LEA) superfamily including dehydrins. Several studies dealing with plants grown under controlled conditions revealed a correlation (significant quantitative relationship) between dehydrin transcript/protein relative accumulation and plant frost tolerance. However, to apply these results in breeding, field experiments are necessary. The aim of the review is to provide a summary of the studies dealing with the relationships between plant acquired frost tolerance and COR/LEA transcripts/proteins relative accumulation in cereals grown in controlled and field conditions. The impacts of cold acclimation and vernalisation processes on the ability of winter-type Triticeae to accumulate COR/LEA proteins are discussed. The factors determining dehydrin relative accumulation under controlled cold acclimation treatments versus field trials during winter seasons are discussed. In conclusion, it can be stated that dehydrins could be used as suitable indicators of winter survival in field-grown winter cereals but only in plant prior to the fulfilment of vernalisation requirement.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1269
Author(s):  
David K. Mfuti ◽  
Amanuel Tamiru ◽  
William D. J. Kirk ◽  
Adeyemi O. Akinyemi ◽  
Heather Campbell ◽  
...  

The potential of semiochemicals to lure insect pests to a trap where they can be killed with biopesticides has been demonstrated as an eco-friendly pest management alternative. In this study, we tested two recently characterized male-produced aggregation pheromones of the bean flower thrips Megalurothrips sjostedti (Trybom), namely (R)-lavandulyl 3-methylbutanoate (major) and (R)-lavandulol (minor), for their field efficacy. Moreover, compatibility of these pheromones and two other thrips attractants, Lurem-TR and neryl (S)-2-methylbutanoate, with the entomopathogenic fungus (EPF) Metarhizium anisopliae ICIPE 69 has been determined. Our study revealed that the M. sjostedti aggregation pheromones have dose-dependent antifungal effects on the EPF viability, but showed no fungistatic effect at a field-realistic dose for attraction of thrips. (R)-lavandulyl 3-methylbutanoate had similar antifungal effects as neryl (S)-2-methylbutanoate 8 days after exposure; whereas, Lurem-TR had a stronger antifungal effect than other thrips attractants. In the semi-field experiments, all autoinoculation devices maintained at least 86% viability of M. anisopliae conidia after 12 days of exposure. Field trials demonstrated for the first time that (R)-lavandulyl 3-methylbutanoate increases trap catches. Our findings pave a way for designing a lure-and-kill thrips management strategy to control bean flower thrips using autoinoculation devices or spot spray application.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 1991-1997 ◽  
Author(s):  
Xiaoxue Ji ◽  
Jingjing Li ◽  
Zhen Meng ◽  
Shouan Zhang ◽  
Bei Dong ◽  
...  

Gray mold caused by Botrytis cinerea can be a severe disease of tomato infecting leaves and fruits of tomato plants. Chemical control is currently the most effective and reliable method; however, application of fungicides has many drawbacks. The combination of biological control agents with newly developed fungicides may be a practicable method to control B. cinerea. Fluopimomide is a newly developed fungicide with a novel mode of action. Bacillus methylotrophicus TA-1, isolated from rhizosphere soil of tomato, is a bacterial strain with a broad spectrum of antimicrobial activities. Little information is currently available about the effect of fluopimomide and its integrated effect on B. cinerea. Therefore, laboratory, pot, and field experiments were carried out to determine the effects of fluopimomide alone and in combination with B. methylotrophicus TA-1 against gray mold on tomato. The in vitro growth of B. methylotrophicus TA-1 was unaffected by 100 mg liter−1 fluopimomide. Inhibition of B. cinerea mycelial growth was significantly increased under combined treatment of fluopimomide and B. methylotrophicus TA-1. In greenhouse experiments, efficacy against gray mold was significantly greater by an integration of fluopimomide and B. methylotrophicus TA-1 than by either alone; control efficacy of fluopimomide at 50 and 100 g ha−1 in combination with B. methylotrophicus TA-1 at 108 colony-forming units (cfu) ml−1 reached 70.16 and 69.32%, respectively, compared with the untreated control. In both field trials during 2017 and 2018, control efficacy was significantly higher for the combination of fluopimomide at 50 and 100 g ha−1 in combination with B. methylotrophicus TA-1 than for either treatment alone. The results from this study indicated that integration of the new fungicide fluopimomide with the biocontrol agent B. methylotrophicus TA-1 synergistically increased control efficacy of the fungicide against gray mold of tomato.


1986 ◽  
Vol 26 (6) ◽  
pp. 745 ◽  
Author(s):  
PA Taylor ◽  
SP Flett ◽  
RFde Boer ◽  
D Marshall

The period of susceptibility of potato tubers to powdery scab (Spongospora subterranea) was studied by inoculating potato plants with spores, or by watering plants in infested soil, at different stages of plant development in greenhouse conditions. Maximum susceptibility began about 1 week before the stage when 50% of stolons had swollen to at least 5-mm diameter (tuber set), and ended 3-4 weeks later. With holding irrigation water during this period reduced the severity of powdery scab by 65-75% in field experiments in 1981-82 and 1982-83, but had no apparent effect on disease severity in 3 out of 6 large-scale field trials during 1984-85.


2013 ◽  
Vol 93 (4) ◽  
pp. 619-625 ◽  
Author(s):  
K. F. Chang ◽  
S. F. Hwang ◽  
H. U. Ahmed ◽  
B. D. Gossen ◽  
G. D. Turnbull ◽  
...  

Chang, K. F., Hwang, S. F., Ahmed, H. U., Gossen, B. D., Turnbull, G. D. and Strelkov, S. E. 2013. Management strategies to reduce losses caused by fusarium seedling blight of field pea. Can. J. Plant Sci. 93: 619–625. Fusarium seedling blight can cause substantial reductions in the stand density of field pea in western Canada. In greenhouse experiments, emergence decreased and root rot severity rose with increasing inoculum density. In field trials in 2007 and 2008 near Edmonton, AB, seeding at different depths and seeding dates did not consistently affect emergence or yield in Fusarium-infested soils. In field experiments, emergence declined significantly with each increase in inoculum level. Also, seed yield were reduced at high levels of disease pressure. Treatment of seed with Apron Maxx improved emergence, nodulation and yield of treatments challenged with inoculum of F. avenaceum in both greenhouse and field experiments. This research demonstrates the need to prevent seedling blight and root rot through proper seed treatment.


2020 ◽  
Vol 13 (2) ◽  
pp. 235-246
Author(s):  
W.Q. Shi ◽  
L.B. Xiang ◽  
D.Z. Yu ◽  
S.J. Gong ◽  
L.J. Yang

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss in wheat and barley production. Integrated pest management (IPM) is required to control this disease and biofungicides, such as tetramycin, could be a novel addition to IPM strategies. The current study investigated in vitro tetramycin toxicity in Fusarium graminearum and evaluated its effectiveness for the control of Fusarium head blight FHB. Tetramycin was shown to affect three key aspects of Fusarium pathogenicity: spore germination, mycelium growth and deoxynivalenol (DON) production. The in vitro results indicated that tetramycin had strong inhibitory activity on the mycelial growth and spore germination. Field trials indicated that tetramycin treatment resulted in a significant reduction in both the FHB disease index and the level of DON accumulation. The reduced DON content in harvested grain was correlated with the amount of Tri5 mRNA determined by qRT-PCR. Synergistic effects between tetramycin and metconazole, in both the in vitro and field experiments were found. Tetramycin could provide an alternative option to control FHB.


1969 ◽  
Vol 28 (1) ◽  
pp. 22-34
Author(s):  
Bernardo G. Capó

A new method of performing field experiments with relatively small numbers of treatments is described. The requirement to be fulfilled by the layouts of such field tests is specified and examples of possible designs for a 5-treatment experiment are illustrated. The theory of the procedure of calculation is discussed and a numerical example of said calculations is furnished in connection with the interpretation of a fertilizer experiment performed with cotton.


1990 ◽  
Vol 38 (2) ◽  
pp. 195-199
Author(s):  
C.B.S. Uiso ◽  
M.C. Gough ◽  
C.J. Stigter

A simple theoretical model was derived to predict velocities of intergranular cyclic air convection currents in bulk stored grain for a given temp. difference between outer and inner vertical regions of the bulk. Using a tracer gas, the measured airflow in a laboratory simulation was found to be in good agreement with theoretical predictions for differences in the range 17-25 degrees C. In tropical field trials in a metal silo, weather-induced intergranular air convection was detected and quantified in practical bulk storage. Significant m.c. increases, proven here to be due to convective air transported moisture, were observed in the top of the grain bulk in laboratory and field experiments. In both cases, troublesome head space condensation occurred. A new way of reducing observed grain damage due to moisture is proposed and the scope for future academic work indicated. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document