Ammonium supply induces differential metabolic adaptative responses in tomato according to leaf phenological stage

Author(s):  
Théo Poucet ◽  
María Begoña González-Moro ◽  
Cécile Cabasson ◽  
Bertrand Beauvoit ◽  
Yves Gibon ◽  
...  

Abstract Nitrate (NO3  -) and ammonium (NH4  +) are the main inorganic nitrogen sources available to plants. However, exclusive ammonium nutrition may lead to a stress situation characterized by growth inhibition, generally associated with a profound metabolic reprogramming. In this work, we aimed at studying how the metabolism adapts according to leaf position in the vertical axis of tomato (Solanum lycopersicum cv. M82) plants grown with NH4  +, NO3  - or NH4NO3 supply. To do so, we dissected leaf biomass composition and metabolism through an integrative analysis of metabolites, ions and enzyme activities. Under ammonium nutrition, carbon and nitrogen metabolism was more perturbed in mature leaves than in young ones, overall suggesting a trade-off between NH4  + accumulation and assimilation to preserve young leaves from ammonium stress. Moreover, NH4  +-fed plants exhibited a rearrangement of carbon partitioning, accumulating sugars and starch at the expense of organic acids, with respect to plants supplied with NO3  -. We explain such reallocation by the action of the biochemical pH-stat to compensate the differential proton production that depends on the nitrogen source provided. This work also underlines that the regulation of leaf primary metabolism is dependent on both the leaf phenological stage and the nitrogen source provided.

2019 ◽  
Vol 5 (2) ◽  
pp. 40 ◽  
Author(s):  
Stephanie Stange ◽  
Susanne Steudler ◽  
Hubertus Delenk ◽  
Anett Werner ◽  
Thomas Walther ◽  
...  

The blue-green pigment xylindein, produced by the soft rot fungus Chlorociboria aeruginascens, is of considerable interest for various applications such as the veneer industry or organic semiconductors. The studies presented were performed in order to understand the fungal growth as well as the pigment production of C. aeruginascens. Therefore, various nutrient compositions were investigated. As a result, observations of the formation of xylindein through C. aeruginascens decoupling from growth were made. In the primary metabolism the uncolored biomass is formed. Various carbohydrates were determined as nutrients for the fungus and as a nitrogen source it was observed that the fungus prefers the complex organic nitrogen source, that being yeast extract. Furthermore, it was discovered that the ratio between carbohydrate and nitrogen sources encourages the switch of the metabolism and therewith the production of the blue-green pigment xylindein.


1968 ◽  
Vol 25 (10) ◽  
pp. 2101-2110 ◽  
Author(s):  
Vera A. Billaud

A year-round limnological study of the biological utilization of molecular nitrogen, ammonia, and nitrate in Smith Lake, a small subarctic lake in interior Alaska, showed that ammonia was consistently the most important nitrogen source. Of the two main algal production periods, the first took place under the ice in May, and depended on ammonia accumulated during the winter for a nitrogen source. The population at this time consisted largely of microflagellates. Chlamydomonas, Euglena, Chlorella, and Mellamonas were among the identified algae present. Immediately after the ice melted from the lake surface, a second population developed. These algae, consisting almost exclusively of Anabaena flos-aquae, used ammonia, nitrate, and molecular nitrogen simultaneously. During the remainder of the summer, uptake rates remained relatively low, with ammonia the most important nitrogen source; during the fall, nitrate uptake briefly approached the magnitude of ammonia uptake. 15N tracer methods were used to measure the uptake rates in this work.


1993 ◽  
Vol 71 (9) ◽  
pp. 1224-1230 ◽  
Author(s):  
L. D. Abraham ◽  
A. Roth ◽  
J. N. Saddler ◽  
C. Breuil

The sap-staining ascomycete Ophiostoma piceae strain 387N used ammonium, but not nitrate, as an inorganic nitrogen source. Organic nitrogen sources assimilated included bovine serum albumin, collagen, acid-hydrolyzed casein, urea, and various amino acids. Sucrose, glucose, maltose, raffinose, and soluble starch were suitable carbon sources. The optimum temperature for growth was near 23 °C, with an upper limit at 35 °C and minimal growth at 4 °C after 3 days. An initial pH of 6.1 yielded the greatest biomass. Proteolytic activity was greatest in cultures supplemented with protein as the nitrogen source, but some activity was detected in cultures with no assimilable source of nitrogen. Proteinases were detected throughout growth in protein-supplemented liquid media, and they appeared to hydrolyze azocoll, with optimal activity at pH 8. Isoelectric focusing gels of culture filtrates, obtained after fungal growth on protein supplemented media, showed a major proteolytic band focusing at pH 5.2. Key words: staining fungi, Ophiostoma, nutrition, biomass, proteinases.


2016 ◽  
Vol 3 (1) ◽  
pp. 69-74
Author(s):  
Simeon Gavrailov ◽  
Viara Ivanova

Abstract The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.


2017 ◽  
Vol 7 (5) ◽  
pp. 17
Author(s):  
Mirza M.V. Baig ◽  
Aniruddha Ratnakar Apastambh

The production of Pectic enzymes by Aspergillus niger was studied under solid state fermentation (SSF). The effect of fermentation condition such as substrate concentration, inoculum volume, incubation time, moistening agent, inducers and organic and inorganic nitrogen sources was studied for enzyme production. Culture conditions were optimized for maximal yield of enzyme. The solid substrate wheat bran was most suitable for pectic enzyme production under SSF. Enzyme production was found maximum after 10 days of incubation. Lactose was found to be most effective as inducer. Gelatin as organic nitrogen source and ammonium nitrate as inorganic nitrogen source yielded high enzyme titres.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Sergii Krysenko ◽  
Arne Matthews ◽  
Nicole Okoniewski ◽  
Andreas Kulik ◽  
Melis G. Girbas ◽  
...  

ABSTRACT Streptomyces coelicolor is a Gram-positive soil bacterium with a high metabolic and adaptive potential that is able to utilize a variety of nitrogen sources. However, little is known about the utilization of the alternative nitrogen source ethanolamine. Our study revealed that S. coelicolor can utilize ethanolamine as a sole nitrogen or carbon (N/C) source, although it grows poorly on this nitrogen source due to the absence of a specific ethanolamine permease. Heterologous expression of a putative ethanolamine permease (SPRI_5940) from Streptomycespristinaespiralis positively influenced the biomass accumulation of the overexpression strain grown in defined medium with ethanolamine. In this study, we demonstrated that a glutamine synthetase-like protein, GlnA4 (SCO1613), is involved in the initial metabolic step of a novel ethanolamine utilization pathway in S. coelicolor M145. GlnA4 acts as a gamma-glutamylethanolamide synthetase. Transcriptional analysis revealed that expression of glnA4 was induced by ethanolamine and repressed in the presence of ammonium. Regulation of glnA4 is governed by the transcriptional repressor EpuRI (SCO1614). The ΔglnA4 mutant strain was unable to grow on defined liquid Evans medium supplemented with ethanolamine. High-performance liquid chromatography (HPLC) analysis demonstrated that strain ΔglnA4 is unable to utilize ethanolamine. GlnA4-catalyzed glutamylation of ethanolamine was confirmed in an enzymatic in vitro assay, and the GlnA4 reaction product, gamma-glutamylethanolamide, was detected by HPLC/electrospray ionization-mass spectrometry (HPLC/ESI-MS). In this work, the first step of ethanolamine utilization in S. coelicolor M145 was elucidated, and a putative ethanolamine utilization pathway was deduced based on the sequence similarity and genomic localization of homologous genes. IMPORTANCE Until now, knowledge of the utilization of ethanolamine in Streptomyces was limited. Our work represents the first attempt to reveal a novel ethanolamine utilization pathway in the actinobacterial model organism S. coelicolor through the characterization of the key enzyme gamma-glutamylethanolamide synthetase GlnA4, which is absolutely required for growth in the presence of ethanolamine. The novel ethanolamine utilization pathway is dissimilar to the currently known ethanolamine utilization pathway, which occurs in metabolome. The novel ethanolamine utilization pathway does not result in the production of toxic by-products (such as acetaldehyde); thus, it is not encapsulated. We believe that this contribution is a milestone in understanding the ecology of Streptomyces and the utilization of alternative nitrogen sources. Our report provides new insight into bacterial primary metabolism, which remains complex and partially unexplored.


1996 ◽  
Vol 32 (4) ◽  
pp. 427-444 ◽  
Author(s):  
K. G. Cassman ◽  
S. K. de Datta ◽  
S. T. Amarante ◽  
S. P. Liboon ◽  
M. I. Samson ◽  
...  

SUMMARYNitrogen efficiency from Azolla microphylla or Sesbania rostrata green manure, rice straw, and inorganic fertilizer-N was compared in two long-term experiments with irrigated lowland rice (Oryza sativa L.). Treatments included a control and each nitrogen source alone or in combinations that provided 50% of the total applied nitrogen from an organic and inorganic nitrogen source. All nitrogen sources were applied at equivalent nitrogen rates to 19–22 consecutive rice crops. Residual effects were assessed in two subsequent cropping seasons at one site. Lower grain yield, agronomic efficiency (Δgrain per kg total applied nitrogen), and apparent nitrogen uptake were obtained from green manure and rice straw nitrogen as sole or dual nitrogen sources rather than from a standard split application of prilled urea. Compared to prilled urea, residual effects from green manure or rice straw included a significant increase in soil organic carbon and total nitrogen, and greater extractable soil nitrogen in the vegetative growth period. After panicle initiation there was no residual effect on the rate of crop nitrogen accumulation, and final grain yields were similar regardless of previous nitrogen source. Recycling of rice straw appeared to have greater potential for reducing fertilizer-N requirements than use of green manure because rice straw is often a wasted resource in irrigated rice systems of the humid tropics, the efficiency of rice straw nitrogen in combination with prilled urea is comparable to green manure nitrogen, and the increase in soil nitrogen from rice straw was 50–150% greater than from green manure.


2015 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Armaini ◽  
Abdi Dharma ◽  
Sumaryati Syukur ◽  
Jamsari

 Optimization have been done on the media for the growth of the isolated thermophiles bacteria from hot springs Rimbo Panti, the nutrients comprising variety of carbon sources such as CMC (carboxymethyl cellulose), avicell (micro crystalline cellulose), and cellobiose, with a variety of sources organic nitrogen, peptone, extracts yeast, tryptone, and urea, as well as variations consist of inorganic nitrogen sources, KNO3, NaNO3, (NH4)2SO4, and (NH4)NO3. Determination of cellulase activity performed using DNS reagent (3,5-dinitro salicylic acid). Maximum cellulase production with high activity based on the results of this research, the best of carbon source is CMC with optimum concentration 0.125%, inorganic nitrogen source is peptone with the optimum concentration of 0.3 to 0.4% and the inorganic nitrogen source is (NH4)2SO4 with optimum concentration of 0.2 - 0.25%. Optimization of size of inoculums obtained the optimum amount of inoculums 2%. Keywords: Optimization, thermophiles bacteria, cellulose, carbon sources, nitrogen sources


Author(s):  
Budi Santosa ◽  
Rozana Rozana ◽  
Astutik Astutik

Nata de coco is made from raw coconut water which is fermented using the Acetobacter xylinum bacteria. This product has the characteristics of a white color, a thickness of approximately 1-2 cm and a chewy texture like a gel. The largest content in nata de coco is fiber known as bacterial cellulose. In addition to requiring sugar as a carbon source, making nata de coco also requires a source of nitrogen to activate the extracellular enzymes of the Acetobacter xylinum bacteria in the manufacture of nata cellulose. Sources of nitogen used in the manufacture of nata de coco generally use inorganic nitrogen sources, which in their development have caused many pros and cons, especially with regard to food safety issues when this product is consumed as a beverage. This study aims to obtain the best alternative nitrogen source and concentration in making nata de coco. The experimental design used in this study was nested randomized design with 2 factors as the first factor, the type of nitrogen source, while the second factor was the concentration of the nitrogen source in the first factor. The types of nitrogen sources used as the first factor were tofu industrial wastewater, green bean sprouts and Azolla microphylla, while the second factor was the concentration of nitrogen sources consisting of 4 levels, namely 0.5%, 1%, 1.5% and 2%. The parameters observed in this study were thickness of nata de coco, weight of nata de coco, crude fiber of nata de coco, number of Acetobacter xylinum cells in the nata de coco layer. The results showed that organic nitrogen sources (tofu, sprouts and Azolla microphylla liquid waste can be an alternative substitute for inorganic nitrogen sources (urea, ZA and ammonium sulfate) which have been commonly used in making nata. The highest quality nata de coco is produced from the treatment of organic nitrogen sources. sprouts with a concentration of 1.5% with a thickness of 2.83 cm, a weight of 279.33 grams, a crude fiber content of 4.14% and the number of Acetobacter xylinum cells in the cellulose layer 0.4 x 107 cells / ml.


Sign in / Sign up

Export Citation Format

Share Document