scholarly journals Golgi-localized TMN1/EMP12 functions in the deposition of rhamnogalacturonan II and I for cell growth in Arabidopsis

Author(s):  
Akihiko Hiroguchi ◽  
Shingo Sakamoto ◽  
Nobutaka Mitsuda ◽  
Kyoko Miwa

Abstract Appropriate pectin deposition in cell walls is important for cell growth in plants. Rhamnogalacturonan II (RG-II) is a portion of pectic polysaccharides; its borate crosslinking is essential for maintenance of pectic networks. However, the overall process of RG-II synthesis is not fully understood. To identify a novel factor for RG-II deposition or dimerization in cell walls, we screened Arabidopsis mutants with altered boron (B)-dependent growth. The mutants exhibited alleviated disorders of primary root (PR) and stem elongation, and fertility under low B conditions, but reduced PR lengths under sufficient B conditions. Altered PR elongation was associated with cell elongation changes caused by loss of function in TMN1 (Transmembrane Nine 1) /EMP12, which encodes a Golgi-localized membrane protein of unknown function that is conserved among eukaryotes. Mutant leaf and root dry weights were lower than those of wild-type plants, regardless of B conditions. In cell walls, TMN1 mutations reduced contents of B, RG-II specific 2-keto-3-deoxy monosaccharides, and rhamnose largely derived from rhamnogalacturonan I (RG-I), suggesting reduced RG-II and RG-I. Together, our findings demonstrate that TMN1 is required for the deposition of RG-II and RG-I for cell growth and we also find that pectin levels modulate plant growth under low B conditions.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-28
Author(s):  
Simona Pagliuca ◽  
Yihong Guan ◽  
Anand D. Tiwari ◽  
Dale Grabowski ◽  
Carmelo Gurnari ◽  
...  

Neomorphic mutations in IDH1/2 producing R-2-Hydroxyglutrate (R-2HG), are common in myeloid malignancies and in various solid cancers. A diffuse hypermethylated status is the biological consequence of the R-2HG-mediated inhibition of several α-ketoglutarate (αKG)-dependent enzymes including DNA dioxygenases TET1, TET2 and TET3.1,2 Specifically, the inhibition of TET2, either induced by the interaction with R-2HG or by direct genomic silencing (as in case of TET2 loss of function mutations) is responsible for the block of the DNA cytosine demethylation pathway, inducing changes in expression patterns, (e.g. decreasing expression of tumor suppressor genes) and impairing execution of differentiation programs. Analysis of genomic data from a Cleveland Clinic (CCF) cohort of AML/MDS patients combined in a meta-analytic fashion with BeatAML3 and Tumor Cancer Genome Atlas (TCGA) cohorts (1119 profiled patients) showed that IDH1/2 mutations are mutually exclusive (only 3% [N=4/106] of AML IDH1/2 mutated cases had TET2 mutations, expected to be at a frequency of 18% [N=110/585] in IDH1/2 wild type cases, p=.000125). In this scenario we suggest that the loss of TET2 activity due to mutations prevents the expansion of IDH1/2 mutant myeloid neoplasms (MNs) because of phenotypic redundancies inducing synthetic lethality. With this premise we stipulated that a critical level of DNA dioxygenase activity exists and thus cells with low TET2 activity will not tolerate further inhibition by R-2HG. Here we propose to apply pharmacologic inhibition of TET2 to produce an additive effect on DNA dioxygenases to investigate whether this will result in a synthetic lethality of IDH1/2 mutant cells. Specifically we hypothesize that TET-dioxygenase inhibition may be implemented as a possible therapeutic strategy in neomorphic IDH1/2 mutant MNs. To explore this hypothesis we conducted a series of in vitro experiments in different isogenic cell lines expressing either mutant or wild type IDH1 or IDH2, that were simultaneously mutant, wild type (WT) or knock down (KD) for TET2 (TF1-IDH2R140Q, K562-IDH1R132C both WT for TET2 gene, and K18-IDH1R132CTET2KD and SIGM5-IDH1R132C TET2MT, both with a doxycycline inducible promoter for mutant IDH1). First we found that the doxycycline induction of ectopic IDH1R132C expression led to R-2HG increase (~10,000-fold over the baseline) and induced cell death in TET2-deficient cells (experiments conducted in SIGM5-IDH1R132C cells showing 70% of decrease in cell growth after five days of IDH induction with doxycycline), confirming the cytotoxic effect of cellular R-2HG. We then tested in IDH1/2MT cells sensitivity towards TETi76, a specific TET inhibitor designed on R-2HG scaffold (with more than 200 fold potency compared to R-2HG in cell-free assays of 5-hydroxy-methyl cytosine [5hMC] production).4 This compound showed particular selectivity towards inhibition of DNA dioxygenases when a set of 23 other dioxygenase inhibitors were screened. Most importantly, consistent with our hypothesis, TETi76 preferentially inhibited the proliferation of IDH1/2MT cells either following doxycycline-induction both in TET2WTand TET2 deficient models (K562 TET2WT, K18 TET2kD, SIGM-5 TET2MT cell lines), or in models not carrying the inducible promoter (TF1 TETWT) (Growth inhibition: 20-25% in IDHWT vs 70-80% in IDHMT cell lines after 72h of co-culture with TETi76 treatment for concentrations ranging between 1 and 5 µM. P-value range: 0.04-0.001 in pairwise comparisons with untreated controls). Overall, our findings are consistent with the idea that neomorphic IDH1/2MT phenocopies loss of function TET2MT, through R-2HG, down-modulating pathways fundamental for cell homeostasis, division and differentiation. If a residual TET-activity is needed for the function of IDH1/2MT cells, the complete block of the residual activity appears to inevitably disrupt this phenotype impairing cell growth and proliferation. This is also in agreement with the paucity of TET3 and TET1 mutation in the context of TET2MT carriers. In summary, results shown here represent an important proof of concept that the increased inhibition of DNA dioxygenase activity, instead of being more leukemogenic, can be synthetically lethal. Our observations may have implications with regard to the therapy of IDH1/2 mutated neoplasms including AML and MDS Disclosures Saunthararajah: EpiDestiny: Consultancy, Current equity holder in private company, Patents & Royalties: University of Illinois at Chicago. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria.


1994 ◽  
Vol 14 (4) ◽  
pp. 2257-2265
Author(s):  
D L Barber ◽  
J C DeMartino ◽  
M O Showers ◽  
A D D'Andrea

The erythropoietin receptor (EPO-R), a member of the cytokine receptor superfamily, can be activated to signal cell growth by binding either EPO or F-gp55, the Friend spleen focus-forming virus glycoprotein. Activation by F-gp55 results in constitutive EPO-R signalling and the first stage of Friend virus-induced erythroleukemia. We have generated a truncated form of the EPO-R polypeptide [EPO-R(T)] which lacks the critical cytoplasmic signal-transducing domain of the EPO-R required for EPO- or F-gp55-induced cell growth. EPO-R(T) specifically inhibited the EPO-dependent growth of EPO-R-expressing Ba/F3 cells without changing the interleukin-3-dependent growth of these cells. In addition, Ba/F3 cells that coexpressed wild-type EPO-R and EPO-R(T) were resistant to transformation by F-gp55 despite efficient expression of the F-gp55 transforming oncoprotein in infected cells. EPO-R(T) inhibited the EPO-dependent tyrosine phosphorylation of wild-type EPO-R, the tyrosine kinase (JAK2), and the SH2 adaptor protein (Shc). In conclusion, the EPO-R(T) polypeptide is a dominant negative polypeptide which specifically interferes with the early stages of EPO-R-mediated signal transduction and which prevents Friend virus transformation of erythroblasts.


1999 ◽  
Vol 119 (1) ◽  
pp. 199-204 ◽  
Author(s):  
Masaru Kobayashi ◽  
Hironobu Nakagawa ◽  
Tomoyuki Asaka ◽  
Toru Matoh

Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 777-785
Author(s):  
Alyssa Dill ◽  
Tai-ping Sun

Abstract RGA and GAI are negative regulators of the gibberellin (GA) signal transduction pathway in Arabidopsis thaliana. These genes may have partially redundant functions because they are highly homologous, and plants containing single null mutations at these loci are phenotypically similar to wild type. Previously, rga loss-of-function mutations were shown to partially suppress defects of the GA-deficient ga1-3 mutant. Phenotypes rescued include abaxial trichome initiation, rosette radius, flowering time, stem elongation, and apical dominance. Here we present work showing that the rga-24 and gai-t6 null mutations have a synergistic effect on plant growth. Although gai-t6 alone has little effect, when combined with rga-24, they completely rescued the above defects of ga1-3 to wild-type or GA-overdose phenotype. However, seed germination and flower development defects were not restored. Additionally, rga-24 and rga-24/gai-t6 but not gai-t6 alone caused increased feedback inhibition of expression of a GA biosynthetic gene in both the ga1-3 and wild-type backgrounds. These results demonstrate that RGA and GAI have partially redundant functions in maintaining the repressive state of the GA-signaling pathway, but RGA plays a more dominant role than GAI. Removing both RGA and GAI function allows for complete derepression of many aspects of GA signaling.


1998 ◽  
Vol 140 (6) ◽  
pp. 1321-1329 ◽  
Author(s):  
Deborah J. Frank ◽  
Mark B. Roth

Regulation of ribosome synthesis is an essential aspect of growth control. Thus far, little is known about the factors that control and coordinate these processes. We show here that the Caenorhabditis elegans gene ncl-1 encodes a zinc finger protein and may be a repressor of RNA polymerase I and III transcription and an inhibitor of cell growth. Loss of function mutations in ncl-1, previously shown to result in enlarged nucleoli, result in increased rates of rRNA and 5S RNA transcription and enlarged cells. Furthermore, ncl-1 adult worms are larger, have more protein, and have twice as much rRNA as wild-type worms. Localization studies show that the level of NCL-1 protein is independently regulated in different cells of the embryo. In wild-type embryos, cells with the largest nucleoli have the lowest level of NCL-1 protein. Based on these results we propose that ncl-1 is a repressor of ribosome synthesis and cell growth.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1039 ◽  
Author(s):  
Song ◽  
Wang ◽  
Chen ◽  
Ma ◽  
Zuo ◽  
...  

L-Ascorbate (Asc) plays important roles in cell growth and plant development, and its de novo biosynthesis was catalyzed by the first rate-limiting enzyme VTC1. However, the function and regulatory mechanism of VTC1 involved in cell development is obscure in Gossypium hirsutum. Herein, the Asc content and AsA/DHA ratio were accumulated and closely linked with fiber development. The GhVTC1 encoded a typical VTC1 protein with functional conserved domains and expressed preferentially during fiber fast elongation stages. Functional complementary analysis of GhVTC1 in the loss-of-function Arabidopsis vtc1-1 mutants indicated that GhVTC1 is genetically functional to rescue the defects of mutants to normal or wild type (WT). The significant shortened primary root in vtc1-1 mutants was promoted to the regular length of WT by the ectopic expression of GhVTC1 in the mutants. Additionally, GhVTC1 expression was induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the GhVTC1 promoter showed high activity and included two ethylene-responsive elements (ERE). Moreover, the 5’-truncted promoters containing the ERE exhibited increased activity by ACC treatment. Our results firstly report the cotton GhVTC1 function in promoting cell elongation at the cellular level, and serve as a foundation for further understanding the regulatory mechanism of Asc-mediated cell growth via the ethylene signaling pathway.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 685
Author(s):  
Isabel Schumacher ◽  
Tohnyui Ndinyanka Fabrice ◽  
Marie-Therese Abdou ◽  
Benjamin M. Kuhn ◽  
Aline Voxeur ◽  
...  

Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition.


2021 ◽  
Author(s):  
Yongrun Cao ◽  
Yue Zhang ◽  
Yuyu Chen ◽  
Ning Yu ◽  
Shah Liaqat ◽  
...  

Abstract Background: Plant cell walls are the main physical barrier encountered by pathogens colonizing plant tissues. Alteration of cell wall integrity (CWI) can activate specific defenses by impairing proteins involved in cell wall biosynthesis, degradation and remodeling, or cell wall damage due to biotic or abiotic stress. Polygalacturonase (PG) depolymerize pectin by hydrolysis, thereby altering pectin composition and structures and activating cell wall defense. Although many studies of CWI have been reported, the mechanism of how PGs regulate cell wall immune response is not well understood. Results: Necrosis appeared in leaf tips at the tillering stage, finally resulting in 3-5 cm of dark brown necrotic tissue. ltn-212 showed obvious cell death and accumulation of H2O2 in leaf tips. The defense responses were activated in ltn-212 to resist bacterial blight pathogen of rice. Map based cloning revealed that a single base substitution (G-A) in the first intron caused incorrect splicing of OsPG1, resulting in a necrotic phenotype. OsPG1 is constitutively expressed in all organs, and the wild-type phenotype was restored in complementation individuals and knockout of wild-type lines resulted in necrosis as in ltn-212. Transmission electron microscopy showed that thicknesses of cell walls were significantly reduced and cell size and shape were significantly diminished in ltn-212.Conclusion: These results demonstrate that OsPG1 encodes a PG in response to the leaf tip necrosis phenotype of ltn-212. Loss-of-function mutation of ltn-212 destroyed CWI, resulting in spontaneous cell death and an auto-activated defense response including reactive oxygen species (ROS) burst and pathogenesis-related (PR) gene expression, as well as enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo). These findings promote our understanding of the CWI mediated defense response.


2020 ◽  
Author(s):  
Qunen Liu ◽  
Yongrun Cao ◽  
Yue Zhang ◽  
Yuyu Chen ◽  
Ning Yu ◽  
...  

Abstract Background Plant cell walls are the main physical barrier encountered by pathogens colonizing plant tissues. Alteration of cell wall integrity (CWI) can activate specific defenses by impairing proteins involved in cell wall biosynthesis, degradation and remodeling, or cell wall damage due to biotic or abiotic stress. Polygalacturonase (PG) depolymerize pectin by hydrolysis, thereby altering pectin composition and structures and activating cell wall defense. Although many studies of CWI have been reported, the mechanism of how PGs regulate cell wall immune response is not well understood.Results Necrosis appeared in leaf tips at the tillering stage, finally resulting in 3–5 cm of dark brown necrotic tissue. ltn-212 showed obvious cell death and accumulation of H2O2 in leaf tips. The defense responses were activated in ltn-212 to resist bacterial blight pathogen of rice. Map based cloning revealed that a single base substitution (G-A) in the first intron caused incorrect splicing of OsPG1, resulting in a necrotic phenotype. OsPG1 is constitutively expressed in all organs, and the wild-type phenotype was restored in complementation individuals and knockout of wild-type lines resulted in necrosis as in ltn-212. Transmission electron microscopy showed that thicknesses of cell walls were significantly reduced and cell size and shape were significantly diminished in ltn-212.Conclusion These results demonstrate that OsPG1 encodes a PG in response to the leaf tip necrosis phenotype of ltn-212. Loss-of-function mutation of ltn-212 destroyed CWI, resulting in spontaneous cell death and an auto-activated defense response including reactive oxygen species (ROS) burst and pathogenesis-related (PR) gene expression, as well as enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo). These findings promote our understanding of the CWI mediated defense response.


2006 ◽  
Vol 18 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Márcia Regina Braga ◽  
Nicholas C. Carpita ◽  
Sonia M. C. Dietrich ◽  
Rita de Cássia L. Figueiredo-Ribeiro

The thickened underground organ of Ocimum nudicaule is a tuber-like structure (xylopodium) that is dormant in winter and sprouts at the beginning of the spring. Changes in content of cell wall polysaccharides were shown to occur from dormancy to sprouting. Pectic polysaccharides of O. nudicaule were analyzed in relation to composition, molecular mass, and linkage structure in these two phenological phases. The pectin content was 33 % lower during sprouting when compared to dormancy. Changes were also observed in the molecular mass of the pectin fraction from dormancy to sprouting. Galacturonic acid was the predominant sugar, suggesting the presence of a homogalacturonan as the main pectic polysaccharide. A decrease in the acidic polysaccharides, homogalacturonans and rhamnogalacturonan I, equally accounted for the decrease in the pectin composition upon sprouting. These acidic carbohydrates were predominantly detected in the cell walls of the phellogen region of the xylopodium, suggesting catabolism of the cell walls of this tissue during bud flushing. These results suggest that variations in the content and in the molecular mass of pectins, in addition to changes in their composition and structure could be related to storage function as well as cell wall extension growth, both required for the sprouting of new buds in the xylopodium of O. nudicaule.


Sign in / Sign up

Export Citation Format

Share Document