scholarly journals ncl-1 Is Required for the Regulation of Cell Size and Ribosomal RNA Synthesis in Caenorhabditis elegans

1998 ◽  
Vol 140 (6) ◽  
pp. 1321-1329 ◽  
Author(s):  
Deborah J. Frank ◽  
Mark B. Roth

Regulation of ribosome synthesis is an essential aspect of growth control. Thus far, little is known about the factors that control and coordinate these processes. We show here that the Caenorhabditis elegans gene ncl-1 encodes a zinc finger protein and may be a repressor of RNA polymerase I and III transcription and an inhibitor of cell growth. Loss of function mutations in ncl-1, previously shown to result in enlarged nucleoli, result in increased rates of rRNA and 5S RNA transcription and enlarged cells. Furthermore, ncl-1 adult worms are larger, have more protein, and have twice as much rRNA as wild-type worms. Localization studies show that the level of NCL-1 protein is independently regulated in different cells of the embryo. In wild-type embryos, cells with the largest nucleoli have the lowest level of NCL-1 protein. Based on these results we propose that ncl-1 is a repressor of ribosome synthesis and cell growth.

Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 399-407 ◽  
Author(s):  
Deborah J. Frank ◽  
Bruce A. Edgar ◽  
Mark B. Roth

The regulation of ribosome synthesis is likely to play an important role in the regulation of cell growth. Previously, we have shown that the ncl-1 gene in Caenorhabditis elegans functions as an inhibitor of cell growth and ribosome synthesis. We now indicate that the Drosophila melanogaster tumor suppressor brain tumor (brat) is an inhibitor of cell growth and is a functional homolog of the C. elegans gene ncl-1. The brat gene is able to rescue the large nucleolus phenotype of ncl-1 mutants. We also show that brat mutant cells are larger, have larger nucleoli, and have more ribosomal RNA than wild-type cells. Furthermore, brat overexpressing cells contain less ribosomal RNA than control cells. These results suggest that the tumorous phenotype of brat mutants may be due to excess cell growth and ribosome synthesis.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Bruno van Swinderen ◽  
Laura B Metz ◽  
Laynie D Shebester ◽  
Jane E Mendel ◽  
Paul W Sternberg ◽  
...  

Abstract To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the α-subunit of Go, have EC50s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goα, and presynaptic Goα-effectors are candidate VA molecular targets.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-28
Author(s):  
Simona Pagliuca ◽  
Yihong Guan ◽  
Anand D. Tiwari ◽  
Dale Grabowski ◽  
Carmelo Gurnari ◽  
...  

Neomorphic mutations in IDH1/2 producing R-2-Hydroxyglutrate (R-2HG), are common in myeloid malignancies and in various solid cancers. A diffuse hypermethylated status is the biological consequence of the R-2HG-mediated inhibition of several α-ketoglutarate (αKG)-dependent enzymes including DNA dioxygenases TET1, TET2 and TET3.1,2 Specifically, the inhibition of TET2, either induced by the interaction with R-2HG or by direct genomic silencing (as in case of TET2 loss of function mutations) is responsible for the block of the DNA cytosine demethylation pathway, inducing changes in expression patterns, (e.g. decreasing expression of tumor suppressor genes) and impairing execution of differentiation programs. Analysis of genomic data from a Cleveland Clinic (CCF) cohort of AML/MDS patients combined in a meta-analytic fashion with BeatAML3 and Tumor Cancer Genome Atlas (TCGA) cohorts (1119 profiled patients) showed that IDH1/2 mutations are mutually exclusive (only 3% [N=4/106] of AML IDH1/2 mutated cases had TET2 mutations, expected to be at a frequency of 18% [N=110/585] in IDH1/2 wild type cases, p=.000125). In this scenario we suggest that the loss of TET2 activity due to mutations prevents the expansion of IDH1/2 mutant myeloid neoplasms (MNs) because of phenotypic redundancies inducing synthetic lethality. With this premise we stipulated that a critical level of DNA dioxygenase activity exists and thus cells with low TET2 activity will not tolerate further inhibition by R-2HG. Here we propose to apply pharmacologic inhibition of TET2 to produce an additive effect on DNA dioxygenases to investigate whether this will result in a synthetic lethality of IDH1/2 mutant cells. Specifically we hypothesize that TET-dioxygenase inhibition may be implemented as a possible therapeutic strategy in neomorphic IDH1/2 mutant MNs. To explore this hypothesis we conducted a series of in vitro experiments in different isogenic cell lines expressing either mutant or wild type IDH1 or IDH2, that were simultaneously mutant, wild type (WT) or knock down (KD) for TET2 (TF1-IDH2R140Q, K562-IDH1R132C both WT for TET2 gene, and K18-IDH1R132CTET2KD and SIGM5-IDH1R132C TET2MT, both with a doxycycline inducible promoter for mutant IDH1). First we found that the doxycycline induction of ectopic IDH1R132C expression led to R-2HG increase (~10,000-fold over the baseline) and induced cell death in TET2-deficient cells (experiments conducted in SIGM5-IDH1R132C cells showing 70% of decrease in cell growth after five days of IDH induction with doxycycline), confirming the cytotoxic effect of cellular R-2HG. We then tested in IDH1/2MT cells sensitivity towards TETi76, a specific TET inhibitor designed on R-2HG scaffold (with more than 200 fold potency compared to R-2HG in cell-free assays of 5-hydroxy-methyl cytosine [5hMC] production).4 This compound showed particular selectivity towards inhibition of DNA dioxygenases when a set of 23 other dioxygenase inhibitors were screened. Most importantly, consistent with our hypothesis, TETi76 preferentially inhibited the proliferation of IDH1/2MT cells either following doxycycline-induction both in TET2WTand TET2 deficient models (K562 TET2WT, K18 TET2kD, SIGM-5 TET2MT cell lines), or in models not carrying the inducible promoter (TF1 TETWT) (Growth inhibition: 20-25% in IDHWT vs 70-80% in IDHMT cell lines after 72h of co-culture with TETi76 treatment for concentrations ranging between 1 and 5 µM. P-value range: 0.04-0.001 in pairwise comparisons with untreated controls). Overall, our findings are consistent with the idea that neomorphic IDH1/2MT phenocopies loss of function TET2MT, through R-2HG, down-modulating pathways fundamental for cell homeostasis, division and differentiation. If a residual TET-activity is needed for the function of IDH1/2MT cells, the complete block of the residual activity appears to inevitably disrupt this phenotype impairing cell growth and proliferation. This is also in agreement with the paucity of TET3 and TET1 mutation in the context of TET2MT carriers. In summary, results shown here represent an important proof of concept that the increased inhibition of DNA dioxygenase activity, instead of being more leukemogenic, can be synthetically lethal. Our observations may have implications with regard to the therapy of IDH1/2 mutated neoplasms including AML and MDS Disclosures Saunthararajah: EpiDestiny: Consultancy, Current equity holder in private company, Patents & Royalties: University of Illinois at Chicago. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria.


1992 ◽  
Vol 12 (3) ◽  
pp. 1162-1178 ◽  
Author(s):  
C Costigan ◽  
S Gehrung ◽  
M Snyder

The Saccharomyces cerevisiae SPA2 protein localizes at sites involved in polarized cell growth in budding cells and mating cells. spa2 mutants have defects in projection formation during mating but are healthy during vegetative growth. A synthetic lethal screen was devised to identify mutants that require the SPA2 gene for vegetative growth. One mutant, called slk-1 (for synthetic lethal kinase), has been characterized extensively. The SLK1 gene has been cloned, and sequence analysis predicts that the SLK1 protein is 1,478 amino acid residues in length. Approximately 300 amino acids at the carboxy terminus exhibit sequence similarity with the catalytic domains of protein kinases. Disruption mutations have been constructed in the SLK1 gene. slk1 null mutants cannot grow at 37 degrees C, but many cells can grow at 30, 24, and 17 degrees C. Dead slk1 mutant cells usually have aberrant cell morphologies, and many cells are very small, approximately one-half the diameter of wild-type cells. Surviving slk1 cells also exhibit morphogenic defects; these cells are impaired in their ability to form projections upon exposure to mating pheromones. During vegetative growth, a higher fraction of slk1 cells are unbudded compared with wild-type cells, and under nutrient limiting conditions, slk1 cells exhibit defects in cell cycle arrest. The different slk1 mutant defects are partially rescued by an extra copy of the SSD1/SRK1 gene. SSD1/SRK1 has been independently isolated as a suppressor of mutations in genes involved in growth control, sit4, pde2, bcy1, and ins1 (A. Sutton, D. Immanuel, and K.T. Arnat, Mol. Cell. Biol. 11:2133-2148, 1991; R.B. Wilson, A.A. Brenner, T.B. White, M.J. Engler, J.P. Gaughran, and K. Tatchell, Mol. Cell. Biol. 11:3369-3373, 1991). These data suggest that SLK1 plays a role in both cell morphogenesis and the control of cell growth. We speculate that SLK1 may be a regulatory link for these two cellular processes.


Development ◽  
2001 ◽  
Vol 128 (3) ◽  
pp. 407-416 ◽  
Author(s):  
Q. Tian ◽  
G.S. Kopf ◽  
R.S. Brown ◽  
H. Tseng

Active protein synthesis during early oogenesis requires accelerated transcription of ribosomal RNA genes (rDNAs). In response to this demand, rDNAs are amplified more than 1000-fold early in Xenopus oogenesis. Here, we report evidence that rDNA is not amplified in mouse oocytes, but these cells may instead employ the zinc-finger protein basonuclin, a putative rDNA transcription factor, to enhance rRNA synthesis. This conclusion is based on observations that basonuclin is localized in the nucleolus in the mouse oocyte early in its growth phase, when rRNA transcription is highly active; and that the binding sites of basonuclin zinc fingers on the human and mouse rDNA promoters are homologous. In a co-transfection assay, basonuclin can elevate transcription from an rDNA promoter, and its zinc-finger domain can inhibit RNA polymerase I transcription, as detected by a run-on assay, in growing mouse oocytes.


Author(s):  
Akihiko Hiroguchi ◽  
Shingo Sakamoto ◽  
Nobutaka Mitsuda ◽  
Kyoko Miwa

Abstract Appropriate pectin deposition in cell walls is important for cell growth in plants. Rhamnogalacturonan II (RG-II) is a portion of pectic polysaccharides; its borate crosslinking is essential for maintenance of pectic networks. However, the overall process of RG-II synthesis is not fully understood. To identify a novel factor for RG-II deposition or dimerization in cell walls, we screened Arabidopsis mutants with altered boron (B)-dependent growth. The mutants exhibited alleviated disorders of primary root (PR) and stem elongation, and fertility under low B conditions, but reduced PR lengths under sufficient B conditions. Altered PR elongation was associated with cell elongation changes caused by loss of function in TMN1 (Transmembrane Nine 1) /EMP12, which encodes a Golgi-localized membrane protein of unknown function that is conserved among eukaryotes. Mutant leaf and root dry weights were lower than those of wild-type plants, regardless of B conditions. In cell walls, TMN1 mutations reduced contents of B, RG-II specific 2-keto-3-deoxy monosaccharides, and rhamnose largely derived from rhamnogalacturonan I (RG-I), suggesting reduced RG-II and RG-I. Together, our findings demonstrate that TMN1 is required for the deposition of RG-II and RG-I for cell growth and we also find that pectin levels modulate plant growth under low B conditions.


Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 43-61 ◽  
Author(s):  
T Schedl ◽  
J Kimble

Abstract This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3.


Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 919-931 ◽  
Author(s):  
P L Graham ◽  
J Kimble

Abstract Caenorhabditis elegans hermaphrodites make first sperm, then oocytes. By contrast, animals homozygous for any of six loss-of-function mutations in the gene mog-1 (for masculinization of the germ line) make sperm continuously and do not switch into oogenesis. Therefore, in mog-1 mutants, germ cells that normally would become oocytes are transformed into sperm. By contrast, somatic sexual fates are normal, suggesting that mog-1 plays a germ line-specific role in sex determination. Analyses of double mutants suggest that mog-1 negatively regulates the fem genes and/or fog-1: mog-1; fem and mog-1; fog-1 double mutants all make oocytes rather than sperm. Therefore, we propose that wild-type mog-1 is required in the hermaphrodite germ line for regulation of the switch from spermatogenesis to oogenesis rather than for specification of oogenesis per se. In addition to its role in germline sex determination, maternal mog-1 is required for embryogenesis: most progeny of a mog-1; fem or mog-1; fog-1 mother die as embryos. How might the roles of mog-1 in the sperm/oocyte switch and embryogenesis be linked? Previous work showed that fem-3 is regulated post-transcriptionally to achieve the sperm/oocyte switch. We speculate that mog-1 may function in the post-transcriptional regulation of numerous germ-line RNAs, including fem-3. A loss of mog-1 might inappropriately activate fem-3 and thereby abolish the sperm/oocyte switch; its loss might also lead to misregulation of maternal RNAs and thus embryonic death.


Genetics ◽  
1989 ◽  
Vol 123 (4) ◽  
pp. 755-769 ◽  
Author(s):  
T Schedl ◽  
P L Graham ◽  
M K Barton ◽  
J Kimble

Abstract In wild-type Caenorhabditis elegans there are two sexes, self-fertilizing hermaphrodites (XX) and males (XO). To investigate the role of tra-1 in controlling sex determination in germline tissue, we have examined germline phenotypes of nine tra-1 loss-of-function (lf) mutations. Previous work has shown that tra-1 is needed for female somatic development as the nongonadal soma of tra-1(lf) XX mutants is masculinized. In contrast, the germline of tra-1(lf) XX and XO animals is often feminized; a brief period of spermatogenesis is followed by oogenesis, rather than the continuous spermatogenesis observed in wild-type males. In addition, abnormal gonadal (germ line and somatic gonad) phenotypes are observed which may reflect defects in development or function of somatic gonad regulatory cells. Analysis of germline feminization and abnormal gonadal phenotypes of the various mutations alone or in trans to a deficiency reveals that they cannot be ordered in an allelic series and they do not converge to a single phenotypic endpoint. These observations lead to the suggestion that tra-1 may produce multiple products and/or is autoregulated. One interpretation of the germline feminization is that tra-1(+) is necessary for continued specification of spermatogenesis in males. We also report the isolation and characterization of tra-1 gain-of-function (gf) mutations with novel phenotypes. These include temperature sensitive, recessive germline feminization, and partial somatic loss-of-function phenotypes.


Sign in / Sign up

Export Citation Format

Share Document