The underground life of homeodomain-leucine zipper transcription factors

Author(s):  
Perotti M F ◽  
Arce A L ◽  
R L Chan

Abstract Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors (TFs) and hormones that are crucial players regulating root plasticity. Multiple TF families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) TFs in root development. This family is divided into four subfamilies (I to IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip TFs in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several ones from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.

2019 ◽  
Author(s):  
Martina Dori ◽  
Leila Haj Abdullah Alieh ◽  
Daniel Cavalli ◽  
Simone Massalini ◽  
Mathias Lesche ◽  
...  

ABSRTRACTCircular (circ) RNAs have recently emerged as a novel class of non coding transcripts whose identification and function remain elusive. Among many tissues and species, the mammalian brain is the organ in which circRNAs are more abundant and first evidence of their functional significance started to emerge. Yet, even within this well studied organ, annotation of circRNAs remains fragmentary, their sequence is unknown and their expression in specific cell types was never investigated. Overcoming these limitations, here we provide the fist comprehensive identification of circRNAs and their expression patterns in proliferating neural stem cells, neurogenic progenitors and newborn neurons of the developing mouse cortex. Extending the current knowledge about the diversity of this class of transcripts by the identification of nearly 4,000 new circRNAs, our study is the first to provide the full sequence information and expression patterns of circRNAs in cell types representing the lineage of neurogenic commitment. We further exploited our data by evaluating the coding potential, evolutionary conservation and biogenesis of circRNAs that we found to arise from a specific sub-class of linear mRNAs. Our study provides the arising field of circRNA biology with a powerful new resource to address the complexity and potential biological significance of this new class of transcripts.


2018 ◽  
Vol 98 (3) ◽  
pp. 1591-1625 ◽  
Author(s):  
Pier Andrea Borea ◽  
Stefania Gessi ◽  
Stefania Merighi ◽  
Fabrizio Vincenzi ◽  
Katia Varani

Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.


2019 ◽  
Vol 2 (2) ◽  
pp. e201900354 ◽  
Author(s):  
Martina Dori ◽  
Leila Haj Abdullah Alieh ◽  
Daniel Cavalli ◽  
Simone Massalini ◽  
Mathias Lesche ◽  
...  

Circular (circ) RNAs have recently emerged as a novel class of transcripts whose identification and function remain elusive. Among many tissues and species, the mammalian brain is the organ in which circRNAs are more abundant and first evidence of their functional significance started to emerge. Yet, even within this well-studied organ, annotation of circRNAs remains fragmentary, their sequence is unknown, and their expression in specific cell types was never investigated. Overcoming these limitations, here we provide the first comprehensive identification of circRNAs and assessment of their expression patterns in proliferating neural stem cells, neurogenic progenitors, and newborn neurons of the developing mouse cortex. Extending the current knowledge about the diversity of this class of transcripts by the identification of nearly 4,000 new circRNAs, our study is the first to provide the full sequence information and expression patterns of circRNAs in cell types representing the lineage of neurogenic commitment. We further exploited our data by evaluating the coding potential, evolutionary conservation, and biogenesis of circRNAs that we found to arise from a specific subclass of linear mRNAs. Our study provides the arising field of circRNA biology with a powerful new resource to address the complexity and potential biological significance of this new class of transcripts.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Rashmita Pradhan ◽  
Phuong A. Ngo ◽  
Luz d. C. Martínez-Sánchez ◽  
Markus F. Neurath ◽  
Rocío López-Posadas

Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.


1987 ◽  
Vol 7 (5) ◽  
pp. 1629-1637 ◽  
Author(s):  
F Propst ◽  
M P Rosenberg ◽  
A Iyer ◽  
K Kaul ◽  
G F Vande Woude

c-mos RNA transcripts have been previously detected in mouse gonadal tissue and in late-term embryos. Here, we show that they are also present at low levels in placenta and in adult mouse brain, kidney, mammary gland, and epididymis. Marked differences are observed in the size of the mos RNA transcripts detected in different tissues. All transcripts appear to end at the same 3' position, and the tissue-specific size variations appear to be due to the use of different promoters. For example, the testicular and ovarian RNA transcripts initiate approximately 280 and approximately 70 base pairs, respectively, upstream from the first initiation codon, but both end at a common site downstream from the mos open reading frame. The expression of mos is developmentally regulated in gonadal tissue. Thus, the level of mos transcripts in testes is low for the first 3 weeks after birth, increases at least 10-fold around day 25, and reaches adult levels by day 30. In contrast, ovaries from preweaning mice contain a higher level of mos mRNA compared to ovaries from adult mice. In cell fractionation experiments we show that mos transcripts are present in haploid germ cells. We find that these transcripts are associated with monosomes and polysomes. The peculiar pattern of mos expression in mouse gonadal tissue suggests a role for the c-mos proto-oncogene in germ cell differentiation.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 510
Author(s):  
Siyu Rong ◽  
Zhiyang Wu ◽  
Zizhang Cheng ◽  
Shan Zhang ◽  
Huan Liu ◽  
...  

Olive (Olea europaea.L) is an economically important oleaginous crop and its fruit cold-pressed oil is used for edible oil all over the world. The basic region-leucine zipper (bZIP) family is one of the largest transcription factors families among eukaryotic organisms; its members play vital roles in environmental signaling, stress response, plant growth, seed maturation, and fruit development. However, a comprehensive report on the bZIP gene family in olive is lacking. In this study, 103 OebZIP genes from the olive genome were identified and divided into 12 subfamilies according to their genetic relationship with 78 bZIPs of A. thaliana. Most OebZIP genes are clustered in the subgroup that has a similar gene structure and conserved motif distribution. According to the characteristics of the leucine zipper region, the dimerization characteristics of 103 OebZIP proteins were predicted. Gene duplication analyses revealed that 22 OebZIP genes were involved in the expansion of the bZIP family. To evaluate the expression patterns of OebZIP genes, RNA-seq data available in public databases were analyzed. The highly expressed OebZIP genes and several lipid synthesis genes (LPGs) in fruits of two varieties with different oil contents during the fast oil accumulation stage were examined via qRT-PCR. By comparing the dynamic changes of oil accumulation, OebZIP1, OebZIP7, OebZIP22, and OebZIP99 were shown to have a close relationship with fruit development and lipid synthesis. Additionally, some OebZIP had a significant positive correlation with various LPG genes. This study gives insights into the structural features, evolutionary patterns, and expression analysis, laying a foundation to further reveal the function of the 103 OebZIP genes in olive.


2020 ◽  
Vol 10 (11) ◽  
pp. 4147-4158
Author(s):  
Lesley N. Weaver ◽  
Tianlu Ma ◽  
Daniela Drummond-Barbosa

Precise genetic manipulation of specific cell types or tissues to pinpoint gene function requirement is a critical step in studies aimed at unraveling the intricacies of organismal physiology. Drosophila researchers heavily rely on the UAS/Gal4/Gal80 system for tissue-specific manipulations; however, it is often unclear whether the reported Gal4 expression patterns are indeed specific to the tissue of interest such that experimental results are not confounded by secondary sites of Gal4 expression. Here, we surveyed the expression patterns of commonly used Gal4 drivers in adult Drosophila female tissues under optimal conditions and found that multiple drivers have unreported secondary sites of expression beyond their published cell type/tissue expression pattern. These results underscore the importance of thoroughly characterizing Gal4 tools as part of a rigorous experimental design that avoids potential misinterpretation of results as we strive for understanding how the function of a specific gene/pathway in one tissue contributes to whole-body physiology.


1993 ◽  
Vol 13 (2) ◽  
pp. 841-851 ◽  
Author(s):  
K A Lord ◽  
A Abdollahi ◽  
B Hoffman-Liebermann ◽  
D A Liebermann

The proto-oncogenes c-jun, junB, junD, and c-fos recently have been shown to encode for transcription factors with a leucine zipper that mediates dimerization to constitute active transcription factors; juns were shown to dimerize with each other and with c-fos, whereas fos was shown to dimerize only with juns. After birth, hematopoietic cells of the myeloid lineage, and some other terminally differentiated cell types, express high levels of c-fos. Still, the role of fos/jun transcription factors in normal myelopoiesis or in leukemogenesis has not been established. Recently, c-jun, junB, and junD were identified as myeloid differentiation primary response genes stably expressed following induction of terminal differentiation of myeloblastic leukemia M1 cells. Intriguingly, c-fos, though induced during normal myelopoiesis, was not induced upon M1 differentiation. To gain further insights into the role of fos/jun in normal myelopoiesis and leukemogenicity, M1fos and M1junB cell lines, which constitutively express c-fos and junB, respectively, were established. It was shown that enforced expression of c-fos, and to a lesser extent junB, in M1 cells results in both an increased propensity to differentiate and a reduction in the aggressiveness of the M1 leukemic phenotype. M1fos cells constitutively expressed immediate-early and late genetic markers of differentiated M1 cells. The in vitro differentiation of normal myeloblasts into mature macrophages and granulocytes, as well as the increased propensity of M1fos leukemic myeloblasts to be induced for terminal differentiation, was dramatically impaired with use of c-fos antisense oligomers in the culture media. Taken together, these observations show that the proto-oncogenes which encode for fos/jun transcription factors play important roles in promoting myeloid differentiation. The ability of the M1 leukemic myeloblasts to be induced for terminal differentiation in the absence of apparent fos expression indicates that there is some redundancy among the fos/jun family of transcription factors in promoting myeloid differentiation; however, juns alone cannot completely compensate for the lack of fos. Thus, genetic lesions affecting fos/jun expression may play a role in the development of "preleukemic" myelodysplastic syndromes and their further progression to leukemias.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A975-A975
Author(s):  
Ye Liu ◽  
Douglas Forrest

Abstract Background: Thyroid hormone promotes development, growth and metabolism. The level of thyroid hormone ligand (triiodothyronine, T3) in tissues depends not only on circulating levels but also upon tight regulation by activating and inactivating deiodinases within tissues. Type 3 deiodinase (Dio3) inactivates T3 and its precursor thyroxine (T4) and mediates many functions including in neurodevelopmental, sensory and reproductive systems. Dio3 is subject to genomic imprinting. Despite its critical functions, Dio3 is often expressed transiently and at low levels in restricted cell populations making it difficult to detect in natural tissues. Methods: To visualize Dio3 expression at cellular resolution, we derived a Dio3-CreERt2 knockin allele that expresses tamoxifen-dependent Cre recombinase from the endogenous Dio3 gene. When crossed with Ai6 reporter mice, Dio3-CreERt2-positive cells display fluorescent signals. When tamoxifen-treated at neonatal ages, Dio3-CreERt2 recapitulates endogenous Dio3 expression as previously reported in brain: in the bed nucleus of the stria terminalis and preoptic nuclei. In addition, we uncovered several positive cell groups in the hypothalamus, brain stem, pituitary and other tissues. Drastic differences were observed for Dio3-CreERt2 as a paternally versus maternally inherited allele, revealing imprinting effect in specific cell types. Dio3-CreERT2 activity is enhanced by T3 administration, in accordance with Dio3 as a T3-indicible gene. Conclusion: The Dio3-CreERT2 model sensitively reveals Dio3-expressing cell types in tissues. The model is useful for studying expression patterns, imprinting and lineage tracing of Dio3-positive cells during development and homeostatic challenges.


2019 ◽  
Author(s):  
Ross C. Hardison ◽  
Yu Zhang ◽  
Cheryl A. Keller ◽  
Guanjue Xiang ◽  
Elisabeth Heuston ◽  
...  

SummaryMembers of the GATA family of transcription factors play key roles in the differentiation of specific cell lineages by regulating the expression of target genes. Three GATA factors play distinct roles in hematopoietic differentiation. In order to better understand how these GATA factors function to regulate genes throughout the genome, we are studying the epigenomic and transcriptional landscapes of hematopoietic cells in a model-driven, integrative fashion. We have formed the collaborative multi-lab VISION project to conduct ValIdated Systematic IntegratiON of epigenomic data in mouse and human hematopoiesis. The epigenomic data included nuclease accessibility in chromatin, CTCF occupancy, and histone H3 modifications for twenty cell types covering hematopoietic stem cells, multilineage progenitor cells, and mature cells across the blood cell lineages of mouse. The analysis used the Integrative and Discriminative Epigenome Annotation System (IDEAS), which learns all common combinations of features (epigenetic states) simultaneously in two dimensions - along chromosomes and across cell types. The result is a segmentation that effectively paints the regulatory landscape in readily interpretable views, revealing constitutively active or silent loci as well as the loci specifically induced or repressed in each stage and lineage. Nuclease accessible DNA segments in active chromatin states were designated candidate cis-regulatory elements in each cell type, providing one of the most comprehensive registries of candidate hematopoietic regulatory elements to date. Applications of VISION resources are illustrated for regulation of genes encoding GATA1, GATA2, GATA3, and Ikaros. VISION resources are freely available from our website http://usevision.org.


Sign in / Sign up

Export Citation Format

Share Document