scholarly journals Nuclear dynamics during the simultaneous and sustained tip growth of multiple root hairs arising from a single root epidermal cell

2006 ◽  
Vol 57 (15) ◽  
pp. 4269-4275 ◽  
Author(s):  
Mark Jones ◽  
Nicholas Smirnoff
2021 ◽  
Vol 12 ◽  
Author(s):  
Guoliang Han ◽  
Yuxia Li ◽  
Ziqi Qiao ◽  
Chengfeng Wang ◽  
Yang Zhao ◽  
...  

Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.


2017 ◽  
Vol 10 (7) ◽  
pp. 1004-1006 ◽  
Author(s):  
Sisi Zhang ◽  
Yajun Pan ◽  
Wang Tian ◽  
Mengqi Dong ◽  
Huifen Zhu ◽  
...  
Keyword(s):  

1999 ◽  
Vol 12 (9) ◽  
pp. 829-832 ◽  
Author(s):  
Norbert C. A. de Ruijter ◽  
Ton Bisseling ◽  
Anne Mie C. Emons

We studied the response of the actin cytoskeleton in vetch root hairs after application of host-specific Nod factor. Within 3 to 15 min, the number of sub-apical fine bundles of actin filaments (FB-actin) increased in all developmental stages. Tip growth resumed only in hairs in which the FB-actin density and the length of the region with FB-actin exceeded a minimal value.


2015 ◽  
Vol 27 (3) ◽  
pp. 806-822 ◽  
Author(s):  
Ming-Juan Lei ◽  
Qi Wang ◽  
Xiaolin Li ◽  
Aimin Chen ◽  
Li Luo ◽  
...  

2001 ◽  
Vol 13 (1) ◽  
pp. 139 ◽  
Author(s):  
Stamatis Rigas ◽  
Guilhem Debrosses ◽  
Kosmas Haralampidis ◽  
Francisco Vicente-Agullo ◽  
Kenneth A. Feldmann ◽  
...  

2010 ◽  
Vol 22 (9) ◽  
pp. 2999-3019 ◽  
Author(s):  
Miroslav Ovečka ◽  
Tobias Berson ◽  
Martina Beck ◽  
Jan Derksen ◽  
Jozef Šamaj ◽  
...  

2007 ◽  
Vol 104 (52) ◽  
pp. 20996-21001 ◽  
Author(s):  
G. B. Monshausen ◽  
T. N. Bibikova ◽  
M. A. Messerli ◽  
C. Shi ◽  
S. Gilroy

2021 ◽  
Author(s):  
Jia-Shuo Yang ◽  
Jayakumar Bose ◽  
Sergey Shabala ◽  
Yong-Ling Ruan

AbstractCotton fibers are single-celled trichomes initiated from ovule epidermis prior to anthesis. Thereafter, the fibers undergo rapid elongation for 20 d before switching to intensive cell wall cellulose synthesis. The final length attained determines fiber yield and quality. As such, cotton fiber represents an excellent single cell model to study regulation of cell growth and differentiation, with significant agronomical implications. One major unresolved question is whether fiber elongation follows a diffusive or a tip growth pattern. We addressed this issue by using cell biology and electrophysiological approaches. Confocal imaging of Ca2+ binding dye, fluo-3 acetoxymethyl (Fluo-3), and in situ microelectrode ion flux measurement revealed that cytosolic Ca2+ was evenly distributed along the elongating fiber cells with Ca2+ and H+ fluxes oscillating from apical to basal regions of the elongating fibers. These findings demonstrate that, contrary to growing pollen tubes or root hairs, cotton fiber growth follows a diffusive, but not the tip growth, pattern. Further analyses showed that the elongating fibers exhibited substantial net H+ efflux, indicating a strong activity of the plasma membrane H+-ATPase required for energy dependent solute uptake. Interestingly, the growing cotton fibers were responding to H2O2 treatment, know to promote fiber elongation, by a massive increase in the net Ca2+ and H+ efflux in both tip and basal zones, while non-growing cells lacked this ability. These observations suggest that desensitization of the cell and a loss of its ability to respond to H2O2 may be causally related to the termination of the cotton fiber elongation.One sentence summaryConfocal imaging of Ca2+ patterning and in situ microelectrode ion flux measurements demonstrate that, contrary to growing pollen tubes or root hairs, cotton fiber growth follows a diffusive, but not the tip growth, pattern.


2021 ◽  
Author(s):  
Lenka Kuběnová ◽  
Michaela Tichá ◽  
Jozef Šamaj ◽  
Miroslav Ovečka

AbstractArabidopsis root hairs develop as long tubular extensions from the rootward pole of trichoblasts and exert polarized tip growth. The establishment and maintenance of root hair polarity is a complex process involving the local apical production of reactive oxygen species (ROS) generated by NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN C/ROOT HAIR DEFECTIVE 2 (AtRBOHC/RHD2). It has been shown that loss-of-function rhd2 mutants have short root hairs that are unable to elongate by tip growth, and this phenotype was fully complemented by GFP-RHD2 expressed under the RHD2 promoter. However, the spatiotemporal mechanism of AtRBOHC/RHD2 subcellular redistribution and delivery to the plasma membrane (PM) during root hair initiation and tip growth are still unclear. Here, we used advanced microscopy for detailed qualitative and quantitative analysis of vesicular compartments containing GFP-RHD2 and characterization of their movements in developing bulges and growing root hairs. These compartments, identified by an independent marker such as the trans-Golgi network (TGN), deliver GFP-RHD2 to the apical PM domain, the extent of which correlates with the stage of root hair formation. Movements of TGN/early endosomes, but not late endosomes, were affected in the bulging domains of the rhd2-1 mutant. Finally, we reveal that accumulation in the growing tip, docking, and incorporation of TGN compartments containing GFP-RHD2 to the apical PM of root hairs requires structural sterols. These results help clarify the mechanism of polarized AtRBOHC/RHD2 targeting, maintenance, and recycling at the apical PM domain, coordinated with different developmental stages of root hair initiation and growth.One-sentence summaryAdvanced microscopy and quantitative analysis of vesicular TGN compartments revealed that delivering GFP-RHD2 to the apical plasma membrane domains of developing bulges and growing root hairs requires structural sterols.


2020 ◽  
Author(s):  
Daewon Kim ◽  
Jiyuan Yang ◽  
Fangwei Gu ◽  
Sung Jin Park ◽  
Jonathon Combs ◽  
...  

ABSTRACTIn plants, root hairs undergo a highly-polarized form of cell expansion called tip-growth, in which cell wall deposition is restricted to the root hair apex. In order to identify essential cellular components that might have been missed in earlier genetic screens we identified conditional temperature sensitive (ts) root hair mutants by EMS mutagenesis. Here we describe one of these mutants, fer-ts (feronia-temperature sensitive). Mutant fer-ts seedlings grew normally at normal temperatures (20°C), but failed to form root hairs at elevated temperatures (30°C). Map based-cloning and whole genome sequencing revealed that fer-ts resulted from a G41S substitution in the extracellular domain of FERONIA (FER). A functional fluorescent fusion of FER containing the fer-ts mutation localized to plasma membranes, but was subject to enhanced protein turnover at elevated temperatures. While tip-growth was rapidly inhibited by addition of RALF1 peptides in both wild-type and fer-ts mutants at normal temperatures, root elongation of fer-ts seedlings was resistant to added RALF1 peptide at elevated temperatures. Additionally, at elevated temperatures fer-ts seedlings displayed altered ROS accumulation upon auxin treatment and phenocopied constitutive fer mutant responses to a variety of plant hormone treatments. Molecular modeling and sequence comparison with other CrRLK1L receptor family members revealed that the mutated glycine in fer-ts is highly conserved, but is not located in the recently characterized RALF23 and LORELI-LIKE-GLYCOPROTEIN (LLG2) binding domains, perhaps suggesting that fer-ts phenotypes may not be directly due to loss of binding to RALF1 peptides.


Sign in / Sign up

Export Citation Format

Share Document