scholarly journals Rhizobium Nod Factors Induce an Increase in Sub-apical Fine Bundles of Actin Filaments in Vicia sativa Root Hairs within Minutes

1999 ◽  
Vol 12 (9) ◽  
pp. 829-832 ◽  
Author(s):  
Norbert C. A. de Ruijter ◽  
Ton Bisseling ◽  
Anne Mie C. Emons

We studied the response of the actin cytoskeleton in vetch root hairs after application of host-specific Nod factor. Within 3 to 15 min, the number of sub-apical fine bundles of actin filaments (FB-actin) increased in all developmental stages. Tip growth resumed only in hairs in which the FB-actin density and the length of the region with FB-actin exceeded a minimal value.

2005 ◽  
Vol 18 (11) ◽  
pp. 1195-1204 ◽  
Author(s):  
Björn J. Sieberer ◽  
Antonius C. J. Timmers ◽  
Anne Mie C. Emons

The microtubule (MT) cytoskeleton is an important part of the tip-growth machinery in legume root hairs. Here we report the effect of Nod factor (NF) on MTs in root hairs of Medicago truncatula. In tip-growing hairs, the ones that typically curl around rhizobia, NF caused a subtle shortening of the endoplasmic MT array, which recovered within 10 min, whereas cortical MTs were not visibly affected. In growth-arresting root hairs, endoplasmic MTs disappeared shortly after NF application, but reformed within 20 min, whereas cortical MTs remained present in a high density. After NF treatment, growth-arresting hairs were swelling at their tips, after which a new outgrowth formed that deviated with a certain angle from the former growth axis. MT depolymerization with oryzalin caused a growth deviation similar to the NF; whereas, combined with NF, oryzalin increased and the MT-stabilizing drug taxol suppressed NF-induced growth deviation. The NF-induced disappearance of the endoplasmic MTs correlated with a loss of polar cytoarchitecture and straight growth directionality, whereas the reappearance of endoplasmic MTs correlated with the new set up of polar cytoarchitecture. Drug studies showed that MTs are involved in determining root hair elongation in a new direction after NF treatment.


2003 ◽  
Vol 16 (10) ◽  
pp. 884-892 ◽  
Author(s):  
Joachim Goedhart ◽  
Jean-Jacques Bono ◽  
Ton Bisseling ◽  
Theodorus W. J. Gadella

Nod factors are signaling molecules secreted by Rhizobium bacteria. These lipo-chitooligosaccharides (LCOs) are required for symbiosis with legumes and can elicit specific responses at subnanomolar concentrations on a compatible host. How plants perceive LCOs is unclear. In this study, using fluorescent Nod factor analogs, we investigated whether sulfated and nonsulfated Nod factors were bound and perceived differently by Medicago truncatula and Vicia sativa root hairs. The bioactivity of three novel sulfated fluorescent LCOs was tested in a root hair deformation assay on M. truncatula, showing bioactivity down to 0.1 to 1 nM. Fluorescence microscopy of plasmolyzed M. truncatula root hairs shows that sulfated fluorescent Nod factors accumulate in the cell wall of root hairs, whereas they are absent from the plasma membrane when applied at 10 nM. When the fluorescent Nod factor distribution in medium surrounding a root was studied, a sharp decrease in fluorescence close to the root hairs was observed, visualizing the remarkable capacity of root hairs to absorb Nod factors from the medium. Fluorescence correlation microscopy was used to study in detail the mobilities of sulfated and nonsulfated fluorescent Nod factors which are biologically active on M. truncatula and V. sativa, respectively. Remarkably, no difference between sulfated and nonsulfated Nod factors was observed: both hardly diffuse and strongly accumulate in root hair cell walls of both M. truncatula and V. sativa. The implications for the mode of Nod factor perception are discussed.


2015 ◽  
Vol 27 (3) ◽  
pp. 806-822 ◽  
Author(s):  
Ming-Juan Lei ◽  
Qi Wang ◽  
Xiaolin Li ◽  
Aimin Chen ◽  
Li Luo ◽  
...  

1997 ◽  
Vol 10 (3) ◽  
pp. 388-393 ◽  
Author(s):  
Andrea Krause ◽  
Vo T. T. Lan ◽  
William J. Broughton

Chalcone synthase (CHS) of Vigna unguiculata is encoded by a gene family that is abundantly transcribed in leaves and nodules. Inoculation with Rhizobium sp. NGR234, which nodulates V. unguiculata, or with NGRΔnodABC, a mutant deficient in Nod factor production, induced rapid accumulation of CHS mRNAs in roots and root hairs. As both Nod+ and Nod- bacteria provoke responses, induction of CHS gene expression may involve symbiotic or defense responses. Four days after inoculation with the wild-type Rhizobium sp., the transcript levels increased in roots but decreased in root hairs. Use of a region unique to the 5′ end of a specific CHS gene (VuCHS1) showed that increases of transcript levels in root hairs 24 h after inoculation with both rhizobia were specific to this gene. Transcripts of this gene in roots were only detectable 4 days after treatment with NGR234. It is possible therefore that accumulation of VuCHS1 follows the infection pathway of rhizobia entering legume roots. Purified Nod factors induced accumulation of transcripts, showing that they might be part of the signal transduction pathway leading to CHS expression.


2005 ◽  
Vol 18 (6) ◽  
pp. 533-538 ◽  
Author(s):  
M. C. Laus ◽  
A. A. N. van Brussel ◽  
J. W. Kijne

Infection and subsequent nodulation of legume host plants by the root nodule symbiote Rhizobium leguminosarum usually require attachment of the bacteria to root-hair tips. Bacterial cellulose fibrils have been shown to be involved in this attachment process but appeared not to be essential for successful nodulation. Detailed analysis of Vicia sativa root-hair infection by wild-type Rhizobium leguminosarum RBL5523 and its cellulose fibril-deficient celE mutant showed that wild-type bacteria infected elongated growing root hairs, whereas cellulose-deficient bacteria infected young emerging root hairs. Exopolysaccharide-deficient strains that retained the ability to produce cellulose fibrils could also infect elongated root hairs but infection thread colonization was defective. Cellulose-mediated agglutination of these bacteria in the root-hair curl appeared to prevent entry into the induced infection thread. Infection experiments with V. sativa roots and an extracellular polysaccharide (EPS)- and cellulose-deficient double mutant showed that cellulose-mediated agglutination of the EPS-deficient bacteria in the infection thread was now abolished and that infection thread colonization was partially restored. Interestingly, in this case, infection threads were initiated in root hairs that originated from the cortical cell layers of the root and not in epidermal root hairs. Apparently, surface polysaccharides of R. leguminosarum, such as cellulose fibrils, are determining factors for infection of different developmental stages of root hairs.


2016 ◽  
Vol 29 (12) ◽  
pp. 925-937 ◽  
Author(s):  
Sebastián Acosta-Jurado ◽  
Dulce-Nombre Rodríguez-Navarro ◽  
Yasuyuki Kawaharada ◽  
Juan Fernández Perea ◽  
Antonio Gil-Serrano ◽  
...  

Sinorhizobium fredii HH103-Rifr, a broad host range rhizobial strain, induces nitrogen-fixing nodules in Lotus burttii but ineffective nodules in L. japonicus. Confocal microscopy studies showed that Mesorhizobium loti MAFF303099 and S. fredii HH103-Rifr invade L. burttii roots through infection threads or epidermal cracks, respectively. Infection threads in root hairs were not observed in L. burttii plants inoculated with S. fredii HH103-Rifr. A S. fredii HH103-Rifr nodA mutant failed to nodulate L. burttii, demonstrating that Nod factors are strictly necessary for this crack-entry mode, and a noeL mutant was also severely impaired in L. burttii nodulation, indicating that the presence of fucosyl residues in the Nod factor is symbiotically relevant. However, significant symbiotic impacts due to the absence of methylation or to acetylation of the fucosyl residue were not detected. In contrast S. fredii HH103-Rifr mutants showing lipopolysaccharide alterations had reduced symbiotic capacity, while mutants affected in production of either exopolysaccharides, capsular polysaccharides, or both were not impaired in nodulation. Mutants unable to produce cyclic glucans and purine or pyrimidine auxotrophic mutants formed ineffective nodules with L. burttii. Flagellin-dependent bacterial mobility was not required for crack infection, since HH103-Rifr fla mutants nodulated L. burttii. None of the S. fredii HH103-Rifr surface-polysaccharide mutants gained effective nodulation with L. japonicus.


2010 ◽  
Vol 23 (1) ◽  
pp. 58-66 ◽  
Author(s):  
Anita S. Bek ◽  
Jørgen Sauer ◽  
Mikkel B. Thygesen ◽  
Jens Ø. Duus ◽  
Bent O. Petersen ◽  
...  

Formation of functional nodules is a complex process depending on host–microsymbiont compatibility in all developmental stages. This report uses the contrasting symbiotic phenotypes of Lotus japonicus and L. pedunculatus, inoculated with Mesorhizobium loti or the Bradyrhizobium sp. (Lotus), to investigate the role of Nod factor structure and Nod factor receptors (NFR) for rhizobial recognition, infection thread progression, and bacterial persistence within nodule cells. A key contribution was the use of 800 MHz nuclear magnetic resonance spectroscopy and ultrahigh-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry for Nod factor analysis. The Nod factor decorations at the nonreducing end differ between Bradyrhizobium sp. (Lotus) and M. loti, and the NFR1/NFR5 extracellular regions of L. pedunculatus and L. japonicus were found to vary in amino acid composition. Genetic transformation experiments using chimeric and wild-type receptors showed that both receptor variants recognize the structurally different Nod factors but the later symbiotic phenotype remained unchanged. These results highlight the importance of additional checkpoints during nitrogen-fixing symbiosis and define several amino acids in the LysM domains as expendable for perception of the two differentially carbamoylated Nod factors.


2020 ◽  
Author(s):  
Sabrina Chin ◽  
Taegun Kwon ◽  
Bibi Rafeiza Khan ◽  
J. Alan Sparks ◽  
Eileen L. Mallery ◽  
...  

AbstractRoot hairs are single cell protrusions that enable roots to optimize nutrient and water acquisition. They attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane system are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a BEACH domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SCR) and actin related protein (ARP)2/3 activation complexes, display polarized localizations to root hairs at distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi vesicles and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Live cell microscopy revealed that BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Furthermore, double mutant studies showed that SPI genetically interacts with BRK1 and ARP2/3. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development through pathways that intersect with the W/SCR and ARP2/3 complexes.


2021 ◽  
Author(s):  
Sabrina Chin ◽  
Taegun Kwon ◽  
Bibi Rafeiza Khan ◽  
J Alan Sparks ◽  
Eileen L Mallery ◽  
...  

Abstract Root hairs are single cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a BEACH domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC.


Development ◽  
1997 ◽  
Vol 124 (9) ◽  
pp. 1781-1787 ◽  
Author(s):  
R. Heidstra ◽  
W.C. Yang ◽  
Y. Yalcin ◽  
S. Peck ◽  
A.M. Emons ◽  
...  

Nod factors secreted by Rhizobium leguminosarum bv. viciae induce root hair deformation, involving a reinitiation of tip growth, and the formation of nodule primordia in Vicia sativa (vetch). Ethylene is a potent inhibitor of cortical cell division, an effect that can be counteracted by applying silver ions (Ag+) or aminoethoxy-vinylglycine (AVG). In contrast to the inhibitory effect on cortical cell division, ethylene promotes the formation of root hairs (which involves tip growth) in the root epidermis of Arabidopsis. We investigate the possible paradox concerning the action of ethylene, putatively promoting Nod factor induced tip growth whilst, at the same time, inhibiting cortical cell division. We show, by using the ethylene inhibitors AVG and Ag+, that ethylene has no role in the reinitiation of root hair tip growth induced by Nod factors (root hair deformation) in vetch. However, root hair formation is controlled, at least in part, by ethylene. Furthermore, we show that ACC oxidase, which catalizes the last step in ethylene biosynthesis, is expressed in the cell layers opposite the phloem in that part of the root where nodule primordia are induced upon inoculation with Rhizobium. Therefore, we test whether endogenously produced ethylene provides positional information controlling the site where nodule primordia are formed by determining the position of nodules formed on pea roots grown in the presence of AVG or Ag+.


Sign in / Sign up

Export Citation Format

Share Document