scholarly journals Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots

2013 ◽  
Vol 64 (12) ◽  
pp. 3885-3898 ◽  
Author(s):  
Hongli Ji ◽  
Godelieve Gheysen ◽  
Simon Denil ◽  
Keith Lindsey ◽  
Jennifer F. Topping ◽  
...  
2020 ◽  
Vol 96 (7) ◽  
Author(s):  
Anne-Sophie Masson ◽  
Hai Ho Bich ◽  
Marie Simonin ◽  
Hue Nguyen Thi ◽  
Pierre Czernic ◽  
...  

ABSTRACT Meloidogyne graminicola, also known as the rice root-knot nematode, is one of the most damaging plant-parasitic nematode, especially on rice. This obligate soilborne parasite induces the formation of galls that disturb the root morphology and physiology. Its impact on the root microbiome is still not well described. Here, we conducted a survey in Northern Vietnam where we collected infected (with galls) and non-infected root tips from the same plants in three naturally infested fields. Using a metabarcoding approach, we discovered that M. graminicola infection caused modifications of the root bacterial community composition and network structure. Interestingly, we observed in infected roots a higher diversity and species richness (+24% observed ESVs) as well as a denser and more complex co-occurrence network (+44% nodes and +136% links). We identified enriched taxa that include several hubs, which could serve as potential indicators or biocontrol agents of the nematode infection. Moreover, the community of infected roots is more specific suggesting changes in the functional capabilities to survive in the gall environment. We thus describe the signature of the gall microbiome (the ‘gallobiome’) with shifting abundances and enrichments that lead to a strong restructuration of the root microbiome.


2019 ◽  
Vol 109 (11) ◽  
pp. 1941-1948 ◽  
Author(s):  
Vanessa S. Mattos ◽  
Raycenne R. Leite ◽  
Juvenil E. Cares ◽  
Ana Cristina M. M. Gomes ◽  
Antonio W. Moita ◽  
...  

Meloidogyne graminicola causes significant damage to rice fields worldwide. Sources of resistance to M. graminicola reported in Oryza sativa are limited. Resistance to this species has been found in other Oryza species such as O. glaberrima and O. longistaminata. This study aimed to evaluate the reaction of four wild species of Oryza from the Embrapa Rice and Bean Germplasm Bank (Goiás, Brazil) to a pool of M. graminicola populations and determine the resistance mechanism in O. glumaepatula. Two genotypes of O. glaberrima, one of O. alta, three of O. glumaepatula, one of O. grandiglumis, one of O. longistaminata, and one of O. sativa (control) were included in the study. The results showed that O. glumaepatula was highly resistant (reproduction factor [RF] < 1). O. glaberrima, O. alta, and O. grandiglumis were considered moderately resistant. O. longistaminata was susceptible, although values of RF remained lower than the control O. sativa ‘BR-IRGA 410’, considered highly susceptible. Histological observations on the interaction of O. glumaepatula and M. graminicola showed reduced penetration of second-stage juveniles (J2s) when this resistant wild accession was compared with O. sativa. An intense hypersensitivity response-like reaction occurred at 2 days after inoculation in the root cortex of the resistant accession. Few J2s established in the central cylinder, and rare collapsed giant cells were observed surrounded by degenerate females. Fluorescence microscopy in O. glumaepatula revealed giant cells and the female body presumably exhibiting accumulation of phenolic compounds. Our study suggests that wild rice accessions, especially from the AA genotype (e.g., O. glumaepatula), are of great interest for use in future breeding programs with Oryza spp.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 983-983
Author(s):  
Christopher J. Ng ◽  
Alice Liu ◽  
Katrina J. Ashworth ◽  
Kenneth L. Jones ◽  
Jorge Di Paola

Abstract Background Von Willebrand disease (VWD) type 1 is characterized by low von Willebrand factor (VWF) levels and mucocutaneous bleeding (MCB). Approximately 50% of patients with VWD type 1 exhibit mutations in VWF. However, a large number of patients with VWF levels between 30-50 IU/dL do not show mutations in VWF indicating that other mechanisms are involved. Blood outgrowth endothelial cells (BOECs) are a source of donor-specific endothelial cells and have demonstrated impairments in VWF release and packaging in patients with VWD. BOECs have not been evaluated in individuals with low VWF levels. Hypothesis/Objective We hypothesize that BOECs from individuals with low VWF levels will reveal unique VWF and genome wide epigenetic signatures that may explain the altered plasma VWF levels seen in these patients. Methods BOEC Derivation: Patients with low VWF levels and MCB (30-50 IU/dL) were enrolled in an IRB-approved study. The mononuclear layer from whole blood was isolated and plated onto collagen coated plates. After extended incubation, the presence of BOECs was confirmed by visual morphology and flow cytometry. VWF Transcriptional Analysis: 9 cells lines including: a) 2 BOEC cell lines from control individuals and a HUVEC cell line and c) BOECs from individuals with low VWF, were assayed via single cell RNA sequencing. Bioinformatic analysis included generalized transcriptional expression and single cell expression of VWF. RNA-sequencing expression data was filtered according to the following standardized algorithm. Cells that were defined as monocytes (TYROBP expression > 2 copies) were excluded. Following monocyte exclusions, cells were determined to be of endothelial origin if they demonstrated the presence of PECAM1, CDH5, ROBO4, ESAM, TIE1, or NOTCH4 transcripts, as previously reported by Butler et al. (Cell Reports, 2016). Epigenetic Profiling:Genomic DNA was extracted from BOECs and from peripheral leukocytes (paired to the BOEC draw sample) and analyzed for DNA methylation via an Illumina 850K methylation array. Results BOEC Derivation:A total of eight BOEC lines were generated, 6 from individuals with MCB and VWF levels between 30-50 IU/dL (5:1 female: male ratio, age range 11-54 years) and 2 from healthy controls (2 female, age range 22-39 years) with normal VWF levels and no symptoms of MCB. VWF Expression is decreased in Low VWF Samples: Overall transcript expression of VWF was significantly decreased in low VWF BOEC samples (5.341 transcripts/cell) vs. control endothelial cells (9.076 transcripts/cell), P <0.0001. Generalized Methylation Profiling:Via adjusted P-values, there were 129 methylation sites across multiple genes that were differentially methylated in Low VWF BOECs vs. control endothelial cells. A cluster plot demonstrates that the two control BOEC samples were generally clustered as compared to the other samples (Figure 1A). VWF Specific Methylation: The Illumina 850K array covers 70 prospective methylation sites in VWF, ranging from upstream of the transcriptional start site through the length of the gene. A previous report demonstrated that differences in 8 methylation sites in the VWF promoter correlated with VWF expression (Yuan et al. Nature Communications 2016). 7 of these sites are covered in our assay. Across all of those 7 sites, there was significant increased methylation of the CpG islands in the Low VWF BOECs when compared to the control endothelial cells (Figure 1B). Stability of VWF Methylation:To ensure that the isolation and culture of BOECS does not significantly affect the methylation status of VWF, we conducted a Pearson correlation analysis and demonstrated that peripheral leukocyte (at time of blood draw) and BOEC methylation is highly correlated at VWF specific methylation sites (R2 0.6, P = 0.0004) (Figure 1C). Conclusions Single cell RNA sequencing and genome wide methylation assays of BOECs from individuals with low VWF reveal significant differences in generalized methylation status when compared to BOECs from individuals with normal VWF levels and HUVECs. There is transcriptional downregulation of VWF in low VWF BOECs that is associated with hypermethylation of 7 specific VWF CpG sites in the VWF promoter. Additional sites are being evaluated. Finally, we validated the methylation status of BOECs by demonstrating high correlation with the methylation status of leukocytes from the same individuals. Figure 1 Figure 1. Disclosures Ng: Shire: Consultancy; CSL Behring: Consultancy.


2021 ◽  
Author(s):  
Mao-Yan Liu ◽  
De-Liang Peng ◽  
Wen Su ◽  
Chao Xiang ◽  
Jin-Zhuo Jian ◽  
...  

Abstract Background Potassium (K), an important nutrient element, can improve the stress resistance/tolerance of crops. The application of K in resisting plant parasitic nematodes shows that the K treatment can effectively reduce the occurrence of nematode diseases and increase crop yield. However, data on K2SO4 induced rice resistance to Meloidogyne graminicola are still lacking. To evaluate rice resistance against M. graminicola induced by K2SO4 and to further clarify its mechanism is essential for the rational use of K fertilizer to ensure the safety of rice production.Results In this work, K2SO4 treatment effectively reduced the numbers of both galls and nematodes in rice roots, and delayed the development of nematodes to the adult stage. Rather than by affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites, such effect was achieved by rapidly stimulating hydrogen peroxide (H2O2) accumulation, increasing callose deposition. Meanwhile, such induced resistance required the active participation of the potassium channel OsAKT1 and the potassium transporter OsHAK5. The numbers of both galls and nematodes were higher in both gene deficient plants than that in the wild-type plants, and the K2SO4-induced resistance showed weaker in the defective plants than in the wild-type plants.Conclusions K2SO4 treatment effectively induces rice resistance to root-knot nematode M. graminicola. The mechanism of inducing resistance is to prime the basic defense of rice, up-regulating the expression of resistance-related genes and with the involvement of K+ channel and transporter. These laid a foundation for further study on the mechanism of rice to defense against root-knot nematodes and the effective use of potassium fertilizer to improve rice resistance against nematodes in the field.


2020 ◽  
Author(s):  
Chao xiang ◽  
Ying Liu ◽  
Shi-Ming Liu ◽  
Ya-Fei Huang ◽  
Ling-An Kong ◽  
...  

Abstract Background: The root-knot nematode Meloidogyne graminicola has become a serious threat to rice production as a result of the cultivation changes from transplanting to direct seeding. The nematicidal activity of Aspergillus welwitschiae have been investigated in vitro , and the disease control efficacy of the active compound has been evaluated under greenhouse and field conditions. Results: The active compound αβ-dehydrocurvularin (αβ-DC), isolated by nematicidal assay-directed fractionation, showed significant nematicidal activity against M. graminicola , with an median lethal concentration (LC 50 ) value of 122.2 μg mL −1 . αβ-DC effectively decreased the attraction of rice roots to nematodes and the infection of nematodes and also suppressed the development of nematodes under greenhouse conditions. Moreover, αβ-DC efficiently reduced the root gall index under field conditions. Conclusion: To our knowledge, this is the first report to describe the nematicidal activity of αβ-DC against M. graminicola . The results obtained under greenhouse and field conditions provide a basis for developing commercial formulations from αβ-DC to control M. graminicola in the future. Keywords: Meloidogyne graminicola ; αβ-dehydrocurvularin; nematicidal activity; attractiveness; development; behaviour


2021 ◽  
Author(s):  
◽  
Cynthia Morgan

<p><b>Allergy is a condition affecting between 10 and 30% of the world’s population, with incidence rising every year. It is primarily mediated by THelper (TH) 0 cells reacting to an ordinarily harmless environmental antigen to induce an adaptive TH2 response. TH0 cells are presented the antigen by dendritic cells (DC), the immune systems most proficient antigen presenting cell, which act as the bridge between the innate and adaptive immune system. Dendritic cells specific to this study termed Triple Negative (TN) and CD11b+ are able to prime T cells to become TH2 cells, but current research has been unable to fully determine the proteins that mediate this TH2 priming. TN and CD11b+ DC exhibit transcriptional and functional distinction within the TH2 response, but the individual functions they take on during TH2 responses have not fully been determined. Some evidence suggests that the cell surface protein OX40L and the secreted protein TSLP are capable of inducing TH2 priming, but this is not conserved across all TH2 models. In an effort to determine other specific proteins that induce TH2 priming, RNA-sequencing has been utilized on TN and CD11b+ dendritic cells in TH2 inducing conditions. This thesis aims to analyse RNA-sequencing data generated from purified TH2 antigen positive TN and CD11b+ dendritic cells that have taken up a TH2-inducing stimulus – fluorescently labelled (AF488) non-viable Nippostrongylus brasiliensis. Due to the majority of DC-TH0 interactions occurring at the cell surface interface, the bioinformatic analysis was focused on genes belonging to the surface and secreted compartments.</b></p> <p>Here I show that AF488-Nippostrongylus brasiliensis positive TN and CD11b+ DC are transcriptionally distinct from each other. Functional roles of differentially expressed genes (DEG) were also markedly distinct. Superfamily analysis revealed TN genes associated with signal transduction and proteases, whereas CD11b+ DEG were linked to cell adhesion and immune responses. This suggests that the different DC subsets have different roles in an immune response, and potentially different roles in the induction of TH2 immune responses. Network analysis of DEG from DC subsets and proteins expressed by TH0 and TH2 cell surfaces identified over 300 predicted interactions. Notably, 33 identified were known interactions – validating the bioinformatic methods used. Finally, I have been developing a method to assess novel interactions via flow cytometry methods that allows detection of binding and identification of the cell population that is bound. This has shown promise with the detection of generated proteins bound to TN and CD11b+ DC during TH2 stimulating conditions, paving the way for future novel interaction analyses.</p>


2019 ◽  
Author(s):  
Chao xiang ◽  
Ying Liu ◽  
Shi-Ming Liu ◽  
Ya-Fei Huang ◽  
Ling-An Kong ◽  
...  

Abstract Background: The root-knot nematode Meloidogyne graminicola has become a serious threat to rice production as a result of the cultivation changes from transplanting to direct seeding. The nematicidal metabolites of Aspergillus welwitschiae have been investigated in vitro, and the disease control efficacy of the active compound has been evaluated under greenhouse and field conditions.Results: The active compound αβ-dehydrocurvularin (αβ-DC), isolated by nematicidal assay-directed fractionation, showed significant nematicidal activity against M. graminicola, with an median lethal concentration (LC50) value of 122.2 μg mL−1. αβ-DC effectively decreased the attraction of rice roots to nematodes and the infection of nematodes and also suppressed the development of nematodes under greenhouse conditions. Moreover, αβ-DC efficiently reduced the root gall index under field conditions.Conclusion: To our knowledge, this is the first report to describe the nematicidal activity of αβ-DC against M. graminicola. The results obtained under greenhouse and field conditions provide a basis for developing commercial formulations from αβ-DC to control M. graminicola in the future.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6174
Author(s):  
Arianna Di Napoli ◽  
Davide Vacca ◽  
Giorgio Bertolazzi ◽  
Gianluca Lopez ◽  
Maria Piane ◽  
...  

Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.


2020 ◽  
Author(s):  
Ali Al-Rubaie ◽  
Robert DeMatteo ◽  
Foula Sozo ◽  
Timothy Cole ◽  
Richard Harding ◽  
...  

Abstract Background Lung immaturity is one of the most serious consequences of growth restriction and premature birth. Preterm babies often require mechanical ventilation to survive, but exposure to high levels of oxygen can permanently damage the lungs and interrupts normal development. As lung macrophages play an important role in hyperoxic lung injury and repair, our objective was to use next generation sequencing (NGS) to identify changes in the macrophage transcriptome following neonatal hyperoxia, with and without treatment with human mesenchymal stem cells (hMSCs). We provide the first report of RNA-sequencing of lung macrophages following neonatal hyperoxia and hMSCs therapy. Methods Neonatal mice exposed to normoxia (21%O2) or hyperoxia (90% O2) from birth to postnatal day 4 were randomized to receive either hMSCs or vehicle via intratracheal delivery on postnatal day 4. Mouse lungs from normoxia and hyperoxia groups with and without hMSCs therapy were examined at day 14. RNA-sequencing was performed on flow-cytometric CD45+CD11b+CD11c+ sorted lung macrophages. Purified total RNA was used to construct barcoded multiplex-compatible sequencing libraries using: 1) Illumina Stranded mRNA Sample Preparation chemistry (for transcriptomics) and 2) Bio Scientific NEXTFlex Small RNA chemistry (for small RNA). Results Sorted CD45+CD11b+CD11c+ lung macrophages from hyperoxia-exposed neonatal mice showed differentially expressed macrophage genes and miRNA compared to mice exposed to normoxia or hyperoxia+hMSCs. The administration of hMSCs was found to differentially upregulate 421 genes and downregulate 651 genes in CD45+CD11b+CD11c+ lung macrophages from neonatal mice exposed to hyperoxia, compared to normoxia. Integrity pathway analysis (IPA) analysis of macrophage-specific gene pathways revealed the effectiveness of hMSCs in altering macrophage function towards an anti-inflammatory ‘M2’ phenotype. Small-RNA sequencing provided further evidence on the effects of hMSCs, where 1,098 small RNAs transcriptomes were expressed as either significantly up- or down-regulated in response to hMSCs therapy following hyperoxia-induced lung damage. Conclusions Pathway analysis of the predicted mRNA targets of differentially expressed genes provides insight into miRNAs that preferentially target several important pathways. These miRNAs will be functionally relevant for lung macrophages, and will provide a greater understanding of the interaction between macrophage genotype and the associated phenotypes in the setting of inflammation or tissue repair.


Sign in / Sign up

Export Citation Format

Share Document