scholarly journals Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem

2019 ◽  
Vol 71 (6) ◽  
pp. 1858-1869 ◽  
Author(s):  
Danyu Yao ◽  
Eliana Gonzales-Vigil ◽  
Shawn D Mansfield

Abstract Sucrose synthase (SuSy) is one of two enzyme families capable of catalyzing the first degradative step in sucrose utilization. Several earlier studies examining SuSy mutants in Arabidopsis failed to identify obvious phenotypic abnormalities compared with wild-type plants in normal growth environments, and as such a functional role for SuSy in the previously proposed cellulose biosynthetic process remains unclear. Our study systematically evaluated the precise subcellular localization of all six isoforms of Arabidopsis SuSy via live-cell imaging. We showed that yellow fluorescent protein (YFP)-labeled SuSy1 and SuSy4 were expressed exclusively in phloem companion cells, and the sus1/sus4 double mutant accumulated sucrose under hypoxic conditions. SuSy5 and SuSy6 were found to be parietally localized in sieve elements and restricted only to the cytoplasm. SuSy2 was present in the endosperm and embryo of developing seeds, and SuSy3 was localized to the embryo and leaf stomata. No single isoform of SuSy was detected in developing xylem tissue of elongating stem, the primary site of cellulose deposition in plants. SuSy1 and SuSy4 were also undetectable in the protoxylem tracheary elements, which were induced by the vascular-related transcription factor VND7 during secondary cell wall formation. These findings implicate SuSy in the biological events related to sucrose translocation in phloem.

2008 ◽  
Vol 190 (20) ◽  
pp. 6758-6768 ◽  
Author(s):  
Lyle A. Simmons ◽  
Alan D. Grossman ◽  
Graham C. Walker

ABSTRACT Among other functions, ATP-dependent proteases degrade misfolded proteins and remove several key regulatory proteins necessary to activate stress responses. In Bacillus subtilis, ClpX, ClpE, and ClpC form homohexameric ATPases that couple to the ClpP peptidase. To understand where these peptidases and ATPases localize in living cells, each protein was fused to a fluorescent moiety. We found that ClpX-GFP (green fluorescent protein) and ClpP-GFP localized as focal assemblies in areas that were not occupied by the nucleoid. We found that the percentage of cells with ClpP-GFP foci increased following heat shock independently of protein synthesis. We determined that ClpE-YFP (yellow fluorescent protein) and ClpC-YFP formed foci coincident with nucleoid edges, usually near cell poles. Furthermore, we found that ClpQ-YFP (HslV) localized as small foci, usually positioned near the cell membrane. We found that ClpQ-YFP foci were dependent on the presence of the cognate hexameric ATPase ClpY (HslU). Moreover, we found that LonA-GFP is coincident with the nucleoid during normal growth and that LonA-GFP also localized to the forespore during development. We also investigated LonB-GFP and found that this protein localized to the forespore membrane early in development, followed by localization throughout the forespore later in development. Our comprehensive study has shown that in B. subtilis several ATP-fueled proteases occupy distinct subcellular locations. With these data, we suggest that substrate specificity could be determined, in part, by the spatial and temporal organization of proteases in vivo.


2008 ◽  
Vol 74 (22) ◽  
pp. 7016-7022 ◽  
Author(s):  
Shen-Wen Chiu ◽  
Shau-Yan Chen ◽  
Hin-chung Wong

ABSTRACT MreB, the homolog of eukaryotic actin, may play a vital role when prokaryotes cope with stress by altering their spatial organization, including their morphology, subcellular architecture, and localization of macromolecules. This study investigates the behavior of MreB in Vibrio parahaemolyticus under various stresses. The behavior of MreB was probed using a yellow fluorescent protein-MreB conjugate in merodiploid strain SC9. Under normal growth conditions, MreB formed helical filaments in exponential-phase cells. The shape of starved or stationary-phase cells changed from rods to small spheroids. The cells differentiated into the viable but nonculturable (VBNC) state with small spherical cells via a “swelling-waning” process. In all cases, drastic remodeling of the MreB cytoskeleton was observed. MreB helices typically were loosened and fragmented into short filaments, arcs, and spots in bacteria under these stresses. The disintegrated MreB exhibited a strong tendency to attach to the cytoplasmic membrane. The expression of mreB generally declined in bacteria in the stationary phase and under starvation but was upregulated during the initial periods of cold shock and VBNC state differentiation and decreased afterwards. Our findings demonstrated the behavior of MreB in the morphological changes of V. parahaemolyticus under intrinsic or extrinsic stresses and may have important implications for studying the cellular stress response and aging.


2008 ◽  
Vol 74 (21) ◽  
pp. 6739-6745 ◽  
Author(s):  
Shen-Wen Chiu ◽  
Shau-Yan Chen ◽  
Hin-chung Wong

ABSTRACT MreB, a homolog of eukaryotic actin, participates in morphogenesis, cell division, cell polarity, and chromosome segregation in prokaryotes. In this study, a yellow fluorescent protein conjugate (YFP-MreBVp) was generated to investigate the behavior of MreB in merodiploid strain SC9 of the enteropathogen Vibrio parahaemolyticus. Under normal growth conditions, YFP-MreBVp formed helical filaments with a pitch of 0.64 � 0.09 μm in about 85% of exponential-phase cells, and different clusters, relaxed coils, and ring configurations were observed in a small proportion of the cells. Overexpression of YFP-MreBVp substantially altered the structure of the MreB cytoskeleton and resulted in swollen and pleomorphic cells. Disturbing the activities of penicillin-binding proteins or adding magnesium suppressed the morphological distortions. These results indicate that mislocalization of cell wall-synthesizing machinery was responsible for morphological abnormality. By expressing YFP-MreBVp in the ectopic host bacterium Escherichia coli, shrinkage, fragmentation, and annealing of MreBVp filaments were directly observed. This work revealed the dynamic pattern of the localization of YFP-MreBVp in V. parahaemolyticus and its relationship to cell morphogenesis, and the YFP-MreBVp-E. coli system may be used to investigate the dynamic spatial structures of the MreB cytoskeleton in vivo.


2007 ◽  
Vol 190 (1) ◽  
pp. 363-376 ◽  
Author(s):  
Gonçalo Real ◽  
Allison Fay ◽  
Avigdor Eldar ◽  
Sérgio M. Pinto ◽  
Adriano O. Henriques ◽  
...  

ABSTRACT The Bacillus subtilis SpoVE integral membrane protein is essential for the heat resistance of spores, probably because of its involvement in spore peptidoglycan synthesis. We found that an SpoVE-yellow fluorescent protein (YFP) fusion protein becomes localized to the forespore during the earliest stages of engulfment, and this pattern is maintained throughout sporulation. SpoVE belongs to a well-conserved family of proteins that includes the FtsW and RodA proteins of B. subtilis. These proteins are involved in bacterial shape determination, although their function is not known. FtsW is necessary for the formation of the asymmetric septum in sporulation, and we found that an FtsW-YFP fusion localized to this structure prior to the initiation of engulfment in a nonoverlapping pattern with SpoVE-cyan fluorescent protein. Since FtsW and RodA are essential for normal growth, it has not been possible to identify loss-of-function mutations that would greatly facilitate analysis of their function. We took advantage of the fact that SpoVE is not required for growth to obtain point mutations in SpoVE that block the development of spore heat resistance but that allow normal protein expression and targeting to the forespore. These mutant proteins will be invaluable tools for future experiments aimed at elucidating the function of members of the SEDS (“shape, elongation, division, and sporulation”) family of proteins.


2021 ◽  
Vol 22 (13) ◽  
pp. 7100
Author(s):  
Yohan Seo ◽  
Sung Baek Jeong ◽  
Joo Han Woo ◽  
Oh-Bin Kwon ◽  
Sion Lee ◽  
...  

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality; thus, therapeutic targets continue to be developed. Anoctamin1 (ANO1), a novel drug target considered for the treatment of NSCLC, is a Ca2+-activated chloride channel (CaCC) overexpressed in various carcinomas. It plays an important role in the development of cancer; however, the role of ANO1 in NSCLC is unclear. In this study, diethylstilbestrol (DES) was identified as a selective ANO1 inhibitor using high-throughput screening. We found that DES inhibited yellow fluorescent protein (YFP) fluorescence reduction caused by ANO1 activation but did not inhibit cystic fibrosis transmembrane conductance regulator channel activity or P2Y activation-related cytosolic Ca2+ levels. Additionally, electrophysiological analyses showed that DES significantly reduced ANO1 channel activity, but it more potently reduced ANO1 protein levels. DES also inhibited the viability and migration of PC9 cells via the reduction in ANO1, phospho-ERK1/2, and phospho-EGFR levels. Moreover, DES induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage in PC9 cells, but it did not affect the viability of hepatocytes. These results suggest that ANO1 is a crucial target in the treatment of NSCLC, and DES may be developed as a potential anti-NSCLC therapeutic agent.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3024
Author(s):  
Martin Fogtmann Berthelsen ◽  
Maria Riedel ◽  
Huiqiang Cai ◽  
Søren H. Skaarup ◽  
Aage K. O. Alstrup ◽  
...  

The generation of large transgenic animals is impeded by complex cloning, long maturation and gastrulation times. An introduction of multiple gene alterations increases the complexity. We have cloned a transgenic Cas9 minipig to introduce multiple mutations by CRISPR in somatic cells. Transgenic Cas9 pigs were generated by somatic cell nuclear transfer and were backcrossed to Göttingen Minipigs for two generations. Cas9 expression was controlled by FlpO-mediated recombination and was visualized by translation from red to yellow fluorescent protein. In vitro analyses in primary fibroblasts, keratinocytes and lung epithelial cells confirmed the genetic alterations executed by the viral delivery of single guide RNAs (sgRNA) to the target cells. Moreover, multiple gene alterations could be introduced simultaneously in a cell by viral delivery of sgRNAs. Cells with loss of TP53, PTEN and gain-of-function mutation in KRASG12D showed increased proliferation, confirming a transformation of the primary cells. An in vivo activation of Cas9 expression could be induced by viral delivery to the skin. Overall, we have generated a minipig with conditional expression of Cas9, where multiple gene alterations can be introduced to somatic cells by viral delivery of sgRNA. The development of a transgenic Cas9 minipig facilitates the creation of complex pre-clinical models for cancer research.


Sign in / Sign up

Export Citation Format

Share Document