scholarly journals Clp and Lon Proteases Occupy Distinct Subcellular Positions in Bacillus subtilis

2008 ◽  
Vol 190 (20) ◽  
pp. 6758-6768 ◽  
Author(s):  
Lyle A. Simmons ◽  
Alan D. Grossman ◽  
Graham C. Walker

ABSTRACT Among other functions, ATP-dependent proteases degrade misfolded proteins and remove several key regulatory proteins necessary to activate stress responses. In Bacillus subtilis, ClpX, ClpE, and ClpC form homohexameric ATPases that couple to the ClpP peptidase. To understand where these peptidases and ATPases localize in living cells, each protein was fused to a fluorescent moiety. We found that ClpX-GFP (green fluorescent protein) and ClpP-GFP localized as focal assemblies in areas that were not occupied by the nucleoid. We found that the percentage of cells with ClpP-GFP foci increased following heat shock independently of protein synthesis. We determined that ClpE-YFP (yellow fluorescent protein) and ClpC-YFP formed foci coincident with nucleoid edges, usually near cell poles. Furthermore, we found that ClpQ-YFP (HslV) localized as small foci, usually positioned near the cell membrane. We found that ClpQ-YFP foci were dependent on the presence of the cognate hexameric ATPase ClpY (HslU). Moreover, we found that LonA-GFP is coincident with the nucleoid during normal growth and that LonA-GFP also localized to the forespore during development. We also investigated LonB-GFP and found that this protein localized to the forespore membrane early in development, followed by localization throughout the forespore later in development. Our comprehensive study has shown that in B. subtilis several ATP-fueled proteases occupy distinct subcellular locations. With these data, we suggest that substrate specificity could be determined, in part, by the spatial and temporal organization of proteases in vivo.

2019 ◽  
pp. 525-530
Author(s):  
N. Lipták ◽  
Z. Bősze ◽  
L. Hiripi

Green Fluorescent protein (GFP) transgenic animals are accepted tools for studying various physiological processes, including organ development and cell migration. However, several in vivo studies claimed that GFP may impair transgenic animals’ health. Glomerulosclerosis was observed in transgenic mice and rabbits with ubiquitous reporter protein expression. Heart-specific GFP expression evoked dilated cardiomyopathy and altered cardiac function in transgenic mouse and zebrafish lines, respectively. Moreover, growth retardation and increased axon swelling were observed in GFP and yellow fluorescent protein (YFP) transgenic mice, respectively. This review will focus on the potential drawbacks of the applications of GFP transgenic animals in biomedical research.


2004 ◽  
Vol 70 (11) ◽  
pp. 6809-6815 ◽  
Author(s):  
Jan-Willem Veening ◽  
Wiep Klaas Smits ◽  
Leendert W. Hamoen ◽  
Jan D. H. Jongbloed ◽  
Oscar P. Kuipers

ABSTRACT The distinguishable cyan and yellow fluorescent proteins (CFP and YFP) enable the simultaneous in vivo visualization of different promoter activities. Here, we report new cloning vectors for the construction of cfp and yfp fusions in Bacillus subtilis. By extending the N-terminal portions of previously described CFP and YFP variants, 20- to 70-fold-improved fluorescent-protein production was achieved. Probably, the addition of sequences encoding the first eight amino acids of the N-terminal part of ComGA of B. subtilis overcomes the slow translation initiation that is provoked by the eukaryotic codon bias present in the original cfp and yfp genes. Using these new vectors, we demonstrate that, within an isogenic population of sporulating B. subtilis cells, expression of the abrB and spoIIA genes is distinct in individual cells.


Microbiology ◽  
2005 ◽  
Vol 151 (12) ◽  
pp. 4033-4043 ◽  
Author(s):  
Masaki Osawa ◽  
Harold P. Erickson

Random transposon-mediated mutagenesis has been used to create truncations and insertions of green fluorescent protein (GFP), and Venus-yellow fluorescent protein (YFP), in Escherichia coli FtsZ. Sixteen unique insertions were obtained, and one of them, in the poorly conserved C-terminal spacer, was functional for cell division with the Venus-YFP insert. The insertion of enhanced GFP (eGFP) at this same site was not functional; Venus-YFP was found to be superior to eGFP in other respects too. Testing the constructs for dominant negative effects led to the following general conclusion. The N-terminal domain, aa 1–195, is an independently folding domain that can poison Z-ring function when expressed without a functional C-terminal domain. The effects were weak, requiring expression of the mutant at 3–5 times the level of wild-type FtsZ. The C-terminal domain, aa 195–383, was also independently folding, but had no activity in vivo. The differential activity of the N- and C-terminal domains suggests that FtsZ protofilament assembly is directional, with subunits adding primarily at the bottom of the protofilament. Directional assembly could occur by either a treadmilling or a dynamic instability mechanism.


2008 ◽  
Vol 74 (21) ◽  
pp. 6739-6745 ◽  
Author(s):  
Shen-Wen Chiu ◽  
Shau-Yan Chen ◽  
Hin-chung Wong

ABSTRACT MreB, a homolog of eukaryotic actin, participates in morphogenesis, cell division, cell polarity, and chromosome segregation in prokaryotes. In this study, a yellow fluorescent protein conjugate (YFP-MreBVp) was generated to investigate the behavior of MreB in merodiploid strain SC9 of the enteropathogen Vibrio parahaemolyticus. Under normal growth conditions, YFP-MreBVp formed helical filaments with a pitch of 0.64 � 0.09 μm in about 85% of exponential-phase cells, and different clusters, relaxed coils, and ring configurations were observed in a small proportion of the cells. Overexpression of YFP-MreBVp substantially altered the structure of the MreB cytoskeleton and resulted in swollen and pleomorphic cells. Disturbing the activities of penicillin-binding proteins or adding magnesium suppressed the morphological distortions. These results indicate that mislocalization of cell wall-synthesizing machinery was responsible for morphological abnormality. By expressing YFP-MreBVp in the ectopic host bacterium Escherichia coli, shrinkage, fragmentation, and annealing of MreBVp filaments were directly observed. This work revealed the dynamic pattern of the localization of YFP-MreBVp in V. parahaemolyticus and its relationship to cell morphogenesis, and the YFP-MreBVp-E. coli system may be used to investigate the dynamic spatial structures of the MreB cytoskeleton in vivo.


2007 ◽  
Vol 189 (21) ◽  
pp. 7669-7680 ◽  
Author(s):  
Ying Zhang ◽  
Peter Zuber

ABSTRACT Spx, a transcriptional regulator of the disulfide stress response in Bacillus subtilis, is under the proteolytic control of the ATP-dependent protease ClpXP. Previous studies suggested that ClpXP activity is down-regulated in response to disulfide stress, resulting in elevated concentrations of Spx. The effect of disulfide stress on ClpXP activity was examined using the thiol-specific oxidant diamide. ClpXP-catalyzed degradation of either Spx or a green fluorescent protein derivative bearing an SsrA tag recognized by ClpXP was inhibited by diamide treatment in vitro. Spx is also a substrate for MecA/ClpCP-catalyzed proteolysis in vitro, but diamide used at the concentrations that inhibited ClpXP had little observable effect on MecA/ClpCP activity. ClpX bears a Cys4 Zn-binding domain (ZBD), which in other Zn-binding proteins is vulnerable to thiol-reactive electrophiles. Diamide treatment caused partial release of Zn from ClpX and the formation of high-molecular-weight species, as observed by electrophoresis through nonreducing gels. Reduced Spx proteolysis in vitro and elevated Spx concentration in vivo resulted when two of the Zn-coordinating Cys residues of the ClpX ZBD were changed to Ser. This was reflected in enhanced Spx activity in both transcription activation and repression in cells expressing the Cys-to-Ser mutants. ClpXP activity in vivo is reduced when cells are exposed to diamide, as shown by the enhanced stability of an SsrA-tagged protein after treatment with the oxidant. The results are consistent with the hypothesis that inhibition of ClpXP by disulfide stress is due to structural changes to the N-terminal ZBD of ClpX.


2002 ◽  
Vol 68 (5) ◽  
pp. 2624-2628 ◽  
Author(s):  
Marcus Kaltwasser ◽  
Thomas Wiegert ◽  
Wolfgang Schumann

ABSTRACT Here we describe the construction and application of six new tagging vectors allowing the fusion of two different types of tagging sequences, epitope and localization tags, to any Bacillus subtilis protein. These vectors are based on the backbone of pMUTIN2 and replace the lacZ gene with tagging sequences. Fusion of the tagging sequences occurs by PCR amplification of the 3′ terminal part of the gene of interest (about 300 bp), insertion into the tagging vector in such a way that a fusion protein will be synthesized upon integration of the whole vector via homologous recombination with the chromosomal gene. Three of these tagging sequences (FLAG, hemagglutinin, and c-Myc) allow the covalent addition of a short epitope tag and thereby detection of the fusion proteins in immunoblots, while three other tags (green fluorescent protein+, yellow fluorescent protein, and cyan fluorescent protein) are helpful in assigning proteins within one of the compartments of the cell. The versatility of these vectors was demonstrated by fusing these tags to the cytoplasmically located HtpG and the inner membrane protein FtsH.


2006 ◽  
Vol 188 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Humberto Sanchez ◽  
Dawit Kidane ◽  
M. Castillo Cozar ◽  
Peter L. Graumann ◽  
Juan C. Alonso

ABSTRACT The recognition and processing of double-strand breaks (DSBs) to a 3′ single-stranded DNA (ssDNA) overhang structure in Bacillus subtilis is poorly understood. Mutations in addA and addB or null mutations in recJ (ΔrecJ), recQ (ΔrecQ), or recS (ΔrecS) genes, when present in otherwise-Rec+ cells, render cells moderately sensitive to the killing action of different DNA-damaging agents. Inactivation of a RecQ-like helicase (ΔrecQ or ΔrecS) in addAB cells showed an additive effect; however, when ΔrecJ was combined with addAB, a strong synergistic effect was observed with a survival rate similar to that of ΔrecA cells. RecF was nonepistatic with RecJ or AddAB. After induction of DSBs, RecN-yellow fluorescent protein (YFP) foci were formed in addAB ΔrecJ cells. AddAB and RecJ were required for the formation of a single RecN focus, because in their absence multiple RecN-YFP foci accumulated within the cells. Green fluorescent protein-RecA failed to form filamentous structures (termed threads) in addAB ΔrecJ cells. We propose that RecN is one of the first recombination proteins detected as a discrete focus in live cells in response to DSBs and that either AddAB or RecQ(S)-RecJ are required for the generation of a duplex with a 3′-ssDNA tail needed for filament formation of RecA.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Breanne M. Head ◽  
Christopher I. Graham ◽  
Teassa MacMartin ◽  
Yoav Keynan ◽  
Ann Karen C. Brassinga

Legionnaires’ disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document