Prefrontal Cortex

Author(s):  
Xiao-Jing Wang

The prefrontal cortex (PFC) circuits are characterized by several distinct features. First, the input–output connections of a PFC circuit with the rest of the brain are extraordinarily extensive. In the primates, pyramidal neurons in PFC are greatly more spinous than in the primary sensory areas, so they have a much larger capacity for synaptic integration. Second, PFC areas are endowed with strong intrinsic recurrent connections that are sufficient to generate reverberatory activity underlying working memory and decision-making. Third, excitation and inhibition are balanced dynamically. Unlike early sensory cortical areas, in the frontal areas of both monkey and mouse, the synaptic inhibitory circuit is predominated by GABAergic cell subclasses that are dedicated to controlling inputs to, rather than outputs from, pyramidal neurons, likely reflecting the functional demand of selectively gating input pathways into the PFC in accordance with the behavioral context and goals.

2021 ◽  
Author(s):  
Paul Gomez

In this research we explore in detail how a phenomenon called sustained persistent activity is achieved by circuits of interconnected neurons. Persistent activity is a phenomenon that has been extensively studied (Papoutsi et al. 2013; Kaminski et. al. 2017; McCormick et al. 2003; Rahman, and Berger, 2011). Persistent activity consists in neuron circuits whose spiking activity remains even after the initial stimuli are removed. Persistent activity has been found in the prefrontal cortex (PFC) and has been correlated to working memory and decision making (Clayton E. Curtis and Daeyeol Lee, 2010). We go beyond the explanation of how persistent activity happens and show how arrangements of those basic circuits encode and store data and are used to perform more elaborated tasks and computations. The purpose of the model we propose here is to describe the minimum number of neurons and their interconnections required to explain persistent activity and how this phenomenon is actually a fast storage mechanism required for implementing working memory, task processing and decision making.


2021 ◽  
Author(s):  
Daniel B. Ehrlich ◽  
John D. Murray

Real-world tasks require coordination of working memory, decision making, and planning, yet these cognitive functions have disproportionately been studied as independent modular processes in the brain. Here we propose that contingency representations, defined as mappings for how future behaviors depend on upcoming events, can unify working memory and planning computations. We designed a task capable of disambiguating distinct types of representations. Our experiments revealed that human behavior is consistent with contingency representations, and not with traditional sensory models of working memory. In task-optimized recurrent neural networks we investigated possible circuit mechanisms for contingency representations and found that these representations can explain neurophysiological observations from prefrontal cortex during working memory tasks. Finally, we generated falsifiable predictions for neural data to identify contingency representations in neural data and to dissociate different models of working memory. Our findings characterize a neural representational strategy that can unify working memory, planning, and context-dependent decision making.


2008 ◽  
Vol 99 (6) ◽  
pp. 2985-2997 ◽  
Author(s):  
Kay Thurley ◽  
Walter Senn ◽  
Hans-Rudolf Lüscher

Dopaminergic modulation of prefrontal cortical activity is known to affect cognitive functions like working memory. Little consensus on the role of dopamine modulation has been achieved, however, in part because quantities directly relating to the neuronal substrate of working memory are difficult to measure. Here we show that dopamine increases the gain of the frequency-current relationship of layer 5 pyramidal neurons in vitro in response to noisy input currents. The gain increase could be attributed to a reduction of the slow afterhyperpolarization by dopamine. Dopamine also increases neuronal excitability by shifting the input-output functions to lower inputs. The modulation of these response properties is mainly mediated by D1 receptors. Integrate-and-fire neurons were fitted to the experimentally recorded input-output functions and recurrently connected in a model network. The gain increase induced by dopamine application facilitated and stabilized persistent activity in this network. The results support the hypothesis that catecholamines increase the neuronal gain and suggest that dopamine improves working memory via gain modulation.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Baltazar A Zavala ◽  
Anthony I Jang ◽  
Kareem A Zaghloul

Recent studies have implicated the subthalamic nucleus (STN) in decisions that involve inhibiting movements. Many of the decisions that we make in our daily lives, however, do not involve any motor actions. We studied non-motor decision making by recording intraoperative STN and prefrontal cortex (PFC) electrophysiology as participants perform a novel task that required them to decide whether to encode items into working memory. During all encoding trials, beta band (15–30 Hz) activity decreased in the STN and PFC, and this decrease was progressively enhanced as more items were stored into working memory. Crucially, the STN and lateral PFC beta decrease was significantly attenuated during the trials in which participants were instructed not to encode the presented stimulus. These changes were associated with increase lateral PFC-STN coherence and altered STN neuronal spiking. Our results shed light on why states of altered basal ganglia activity disrupt both motor function and cognition.


2021 ◽  
Author(s):  
Kyra Schapiro ◽  
Kresimir Josic ◽  
Zachary Kilpatrick ◽  
Joshua I Gold

Deliberative decisions based on an accumulation of evidence over time depend on working memory, and working memory has limitations, but how these limitations affect deliberative decision-making is not understood. We used human psychophysics to assess the impact of working-memory limitations on the fidelity of a continuous decision variable. Participants decided the average location of multiple visual targets. This computed, continuous decision variable degraded with time and capacity in a manner that depended critically on the strategy used to form the decision variable. This dependence reflected whether the decision variable was computed either: 1) immediately upon observing the evidence, and thus stored as a single value in memory; or 2) at the time of the report, and thus stored as multiple values in memory. These results provide important constraints on how the brain computes and maintains temporally dynamic decision variables.


2021 ◽  
Vol 15 ◽  
Author(s):  
Noriyuki Narita ◽  
Kazunobu Kamiya ◽  
Sunao Iwaki ◽  
Tomohiro Ishii ◽  
Hiroshi Endo ◽  
...  

BackgroundThe differences in the brain activities of the insular and the visual association cortices have been reported between oral and manual stereognosis. However, these results were not conclusive because of the inherent differences in the task performance-related motor sequence conditions. We hypothesized that the involvement of the prefrontal cortex may be different between finger and oral shape discrimination. This study was conducted to clarify temporal changes in prefrontal activities occurring in the processes of oral and finger tactual shape discrimination using prefrontal functional near-infrared spectroscopy (fNIRS).MethodsSix healthy right-handed males [aged 30.8 ± 8.2 years (mean ± SD)] were enrolled. Measurements of prefrontal activities were performed using a 22-channel fNIRS device (ETG-100, Hitachi Medical Co., Chiba, Japan) during experimental blocks that included resting state (REST), nonsense shape discrimination (SHAM), and shape discrimination (SHAPE).ResultsNo significant difference was presented with regard to the number of correct answers during trials between oral and finger SHAPE discrimination. Additionally, a statistical difference for the prefrontal fNIRS activity between oral and finger shape discrimination was noted in CH 1. Finger SHAPE, as compared with SHAM, presented a temporally shifting onset and burst in the prefrontal activities from the frontopolar area (FPA) to the orbitofrontal cortex (OFC). In contrast, oral SHAPE as compared with SHAM was shown to be temporally overlapped in the onset and burst of the prefrontal activities in the dorsolateral prefrontal cortex (DLPFC)/FPA/OFC.ConclusionThe prefrontal activities temporally shifting from the FPA to the OFC during SHAPE as compared with SHAM may suggest the segregated serial prefrontal processing from the manipulation of a target image to the decision making during the process of finger shape discrimination. In contrast, the temporally overlapped prefrontal activities of the DLPFC/FPA/OFC in the oral SHAPE block may suggest the parallel procession of the repetitive involvement of generation, manipulation, and decision making in order to form a reliable representation of target objects.


2016 ◽  
Author(s):  
Kristen Delevich ◽  
Hanna Jaaro-Peled ◽  
Mario Penzo ◽  
Akira Sawa ◽  
Bo Li

AbstractTwo of the most consistent findings across disrupted-in-schizophrenia-1 (DISC1) mouse models are impaired working memory and reduced number or function of parvalbumin interneurons within the prefrontal cortex. While these findings suggest parvalbumin interneuron dysfunction in DISC1-related pathophysiology, to date, cortical inhibitory circuit function has not been investigated in depth in DISC1 deficiency mouse models. Here we assessed the function of a feedforward circuit between the mediodorsal thalamus (MD) and the medial prefrontal cortex (mPFC) in mice harboring a deletion in one allele of the Disc1 gene. We found that the inhibitory drive onto layer 3 pyramidal neurons in the mPFC was significantly reduced in the Disc1 deficient mice. This reduced inhibition was accompanied by decreased GABA release from local parvalbumin, but not somatostatin, inhibitory interneurons, and by impaired feedforward inhibition in the MD-mPFC circuit. Our results reveal a cellular mechanism by which deficiency in DISC1 causes neural circuit dysfunction frequently implicated in psychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document