Imaging during cardiac interventions

Author(s):  
Luis M. Rincón ◽  
José L. Zamorano

Development and expansion of percutaneous interventional procedures in the catheterization laboratories during the last years have raised the need of imaging techniques capable to identify cardiac structures, guide the procedure, and exclude possible complications. Among different imaging techniques, echocardiography offers the advantage of its mobility and capability to assess different cardiac structures in real time. It has become the preferred method for a wide variety of cardiac procedures before, during, and after these interventions. Electrophysiology has also experienced a major change, as anatomy has proven to play a key role in arrhythmogenesis. This has forced a shift from an electrophysiologically guided procedure to an anatomically guided procedure, where imaging guiding has become essential to ensure an accurate knowledge of intra-cardiac anatomy and complement cardiac electrograms. Echocardiography plays an important function in three aspects for interventional cardiology: prior to the procedure, it provides information for the selection of patients; during the procedure, it can monitor and guide the intervention; and afterwards, it assesses the results. In the last years, 3D-transoesophageal echocardiography (3D-TEE) and intra-cardiac echocardiography (ICE) have proved their utility and safety, providing information regarding anatomy and physiology in real time. There is no question that the use of imaging techniques can enhance the results and safety of these procedures. The particular features of each intervention and the variety of techniques currently available force cardiologists from the fields of echocardiography, interventional cardiology, and electrophysiology to know the strengths and weaknesses of each imaging modality in order to reach their best performance.

2015 ◽  
Vol 21 (2) ◽  
pp. 16-26
Author(s):  
Agnė Drąsutienė ◽  
Sigita Aidietienė ◽  
Diana Zakarkaitė

Summary Real time (RT) three-dimensional (3D) imaging is one of the most significant developments of the last decade and is now being used with increasing frequency in echocardiography and interventional cardiology laboratories. Improvements in transducer technologies and the development of a matrix array transducer were the most important achievements that lead to the new era of real time 3D transoesophageal echocardiography (TEE). RT 3D TEE is ideal for assessing the mitral valve (MV) because of its high spatial resolution altering in improved MV anatomic detail. This imaging modality provides images of high quality which is of a great clinical value inmaking diagnosis of MV disease and a valuable tool for surgeons and interventional cardiologists in planning and guiding interventional procedures. This review is intended to provide data about normal MV anatomy and clinical usefulness of RT 3D TEE in defining acquired MV pathology.


2010 ◽  
Vol 6 (2) ◽  
pp. 71 ◽  
Author(s):  
Lindsay A Smith ◽  
Amit Bhan ◽  
Mark J Monaghan ◽  
◽  
◽  
...  

Echocardiography provides excellent realtime imaging of the heart, making it the imaging modality of choice immediately before, during and after cardiac interventional procedures. It helps to guide case selection and execution of the intervention, evaluates the effects of the intervention and enables early detection of complications. Advances in the design and technology of medical devices and delivery systems, coupled with demand for alternative non-surgical therapies for common medical problems, have led to an increase in the volume, variety and complexity of non-coronary cardiac interventional procedures performed. Many of these procedures require a multidisciplinary team approach and demand optimal imaging to ensure successful outcomes. The aim of this article is to review the expanding role of echocardiography in non-coronary interventional cardiology in adults.


2012 ◽  
Vol 35 (3) ◽  
pp. 129-143 ◽  
Author(s):  
Woonggyu Jung ◽  
Stephen A. Boppart

In pathology, histological examination of the “gold standard” to diagnose various diseases. It has contributed significantly toward identifying the abnormalities in tissues and cells, but has inherent drawbacks when used for fast and accurate diagnosis. These limitations include the lack ofin vivoobservation in real time and sampling errors due to limited number and area coverage of tissue sections. Its diagnostic yield also varies depending on the ability of the physician and the effectiveness of any image guidance technique that may be used for tissue screening during excisional biopsy. In order to overcome these current limitations of histology-based diagnostics, there are significant needs for either complementary or alternative imaging techniques which perform non-destructive, high resolution, and rapid tissue screening. Optical coherence tomography (OCT) is an emerging imaging modality which allows real-time cross-sectional imaging with high resolutions that approach those of histology. OCT could be a very promising technique which has the potential to be used as an adjunct to histological tissue observation when it is not practical to take specimens for histological processing, when large areas of tissue need investigating, or when rapid microscopic imaging is needed. This review will describe the use of OCT as an image guidance tool for fast tissue screening and directed histological tissue sectioning in pathology.


2017 ◽  
Vol 4 (1) ◽  
pp. R1-R13 ◽  
Author(s):  
Malgorzata Wamil ◽  
Sacha Bull ◽  
James Newton

Despite significant advancements in the field of cardiovascular imaging, transoesophageal echocardiography remains the key imaging modality in the management of valvular pathologies. This paper provides echocardiographers with an overview of the modern role of TOE in the diagnosis and management of valvular disease. We describe how the introduction of 3D techniques has changed the detection and grading of valvular pathologies and concentrate on its role as a monitoring tool in interventional cardiology. In addition, we focus on the echocardiographic and Doppler techniques used in the assessment of prosthetic valves and provide guidance for the evaluation of prosthetic valves. Finally, we summarise quantitative methods used for the assessment of valvular stenosis and regurgitation and highlight the key areas where echocardiography remains superior over other novel imaging modalities.


2015 ◽  
Vol 10 (1) ◽  
pp. 8 ◽  
Author(s):  
Krishnaraj S Rathod ◽  
Stephen M Hamshere ◽  
Daniel A Jones ◽  
Anthony Mathur ◽  
◽  
...  

Intravascular imaging has advanced our understanding of coronary artery disease and facilitated decision-making in percutaneous coronary intervention (PCI). In particular, intravascular ultrasound (IVUS) has contributed significantly to modern PCI techniques. The recent introduction of optical coherence tomography (OCT) has further expanded this field due to its higher resolution and rapid image acquisition as compared with IVUS. Furthermore, OCT allows detailed planning of interventional strategies and optimisation before stent deployment, particularly with complex lesions. However, to date it is unclear whether OCT is superior to IVUS as an intracoronary imaging modality with limited data supporting OCT use in routine clinical practice. This review aims to compare these two intracoronary imaging techniques and the recent evidence for their use in this ever-changing field within interventional cardiology.


Heart ◽  
2013 ◽  
Vol 99 (16) ◽  
pp. 1204-1215 ◽  
Author(s):  
Francesco Fulvio Faletra ◽  
Giovanni Pedrazzini ◽  
Elena Pasotti ◽  
Iveta Petrova ◽  
Agne Drasutiene ◽  
...  

2018 ◽  
Author(s):  
Abel Swaan ◽  
Christophe K Mannaerts ◽  
Matthijs J V Scheltema ◽  
Jakko A Nieuwenhuijzen ◽  
C Dilara Savci-Heijink ◽  
...  

BACKGROUND Focal therapy for prostate cancer has been proposed as an alternative treatment to whole-gland therapies in selected men to diminish side effects in localized prostate cancer. As nowadays imaging cannot offer complete prostate cancer disease characterization, multicore systematic biopsies are recommended (transrectal or transperineal). Optical imaging techniques such as confocal laser endomicroscopy and optical coherence tomography allow in vivo, high-resolution imaging. Moreover, they can provide real-time visualization and analysis of tissue and have the potential to offer additive diagnostic information. OBJECTIVE This study has 2 separate primary objectives. The first is to assess the technical feasibility and safety of in vivo focal imaging with confocal laser endomicroscopy and optical coherence tomography. The second is to identify and define characteristics of prostate cancer and normal prostate tissue in confocal laser endomicroscopy and optical coherence tomography imaging by comparing these images with the corresponding histopathology. METHODS In this prospective, in vivo feasibility study, needle-based confocal laser endomicroscopy and optical coherence tomography imaging will be performed before transperineal template mapping biopsy or radical prostatectomy. First, confocal laser endomicroscopy and optical coherence tomography will be performed in 4 patients (2 for each imaging modality) undergoing transperineal template mapping biopsy to assess the feasibility and safety of confocal laser endomicroscopy and optical coherence tomography. If proven to be safe and feasible, confocal laser endomicroscopy and optical coherence tomography will be performed in 10 patients (5 for each imaging modality) undergoing radical prostatectomy. Confocal laser endomicroscopy and optical coherence tomography images will be analyzed by independent, blinded observers. Confocal laser endomicroscopy– and optical coherence tomography–based qualitative and quantitative characteristics and histopathology will be compared. The study complies with the IDEAL (Idea, Development, Exploration, Assessment, Long-term study) stage 2a recommendations. RESULTS At present, the study is enrolling patients and results and outcomes are expected in 2019. CONCLUSIONS Confocal laser endomicroscopy and optical coherence tomography are promising optical imaging techniques that can visualize and analyze tissue structure, possible tumor grade, and architecture in real time. They can potentially provide real-time, high-resolution microscopic imaging and tissue characteristics of prostate cancer in conjunction with magnetic resonance imaging or transrectal ultrasound fusion-guided biopsy procedures. This study will provide insight into the feasibility and tissue-specific characteristics of confocal laser endomicroscopy and optical coherence tomography for real-time optical analysis of prostate cancer. CLINICALTRIAL ClinicalTrials.gov NCT03253458; https://clinicaltrials.gov/ct2/show/NCT03253458 (Archived by WebCite at http://www.webcitation.org/6z9owM66B) REGISTERED REPORT IDENTIFIER RR1-10.2196/9813


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1063
Author(s):  
Antonella Castellano ◽  
Michele Bailo ◽  
Francesco Cicone ◽  
Luciano Carideo ◽  
Natale Quartuccio ◽  
...  

The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5279
Author(s):  
Dong-Hoon Kwak ◽  
Guk-Jin Son ◽  
Mi-Kyung Park ◽  
Young-Duk Kim

The consumption of seaweed is increasing year by year worldwide. Therefore, the foreign object inspection of seaweed is becoming increasingly important. Seaweed is mixed with various materials such as laver and sargassum fusiforme. So it has various colors even in the same seaweed. In addition, the surface is uneven and greasy, causing diffuse reflections frequently. For these reasons, it is difficult to detect foreign objects in seaweed, so the accuracy of conventional foreign object detectors used in real manufacturing sites is less than 80%. Supporting real-time inspection should also be considered when inspecting foreign objects. Since seaweed requires mass production, rapid inspection is essential. However, hyperspectral imaging techniques are generally not suitable for high-speed inspection. In this study, we overcome this limitation by using dimensionality reduction and using simplified operations. For accuracy improvement, the proposed algorithm is carried out in 2 stages. Firstly, the subtraction method is used to clearly distinguish seaweed and conveyor belts, and also detect some relatively easy to detect foreign objects. Secondly, a standardization inspection is performed based on the result of the subtraction method. During this process, the proposed scheme adopts simplified and burdenless calculations such as subtraction, division, and one-by-one matching, which achieves both accuracy and low latency performance. In the experiment to evaluate the performance, 60 normal seaweeds and 60 seaweeds containing foreign objects were used, and the accuracy of the proposed algorithm is 95%. Finally, by implementing the proposed algorithm as a foreign object detection platform, it was confirmed that real-time operation in rapid inspection was possible, and the possibility of deployment in real manufacturing sites was confirmed.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2348
Author(s):  
Leon Riehakainen ◽  
Chiara Cavallini ◽  
Paolo Armanetti ◽  
Daniele Panetta ◽  
Davide Caramella ◽  
...  

Non-invasive longitudinal imaging of osseointegration of bone implants is essential to ensure a comprehensive, physical and biochemical understanding of the processes related to a successful implant integration and its long-term clinical outcome. This study critically reviews the present imaging techniques that may play a role to assess the initial stability, bone quality and quantity, associated tissue remodelling dependent on implanted material, implantation site (surrounding tissues and placement depth), and biomarkers that may be targeted. An updated list of biodegradable implant materials that have been reported in the literature, from metal, polymer and ceramic categories, is provided with reference to the use of specific imaging modalities (computed tomography, positron emission tomography, ultrasound, photoacoustic and magnetic resonance imaging) suitable for longitudinal and non-invasive imaging in humans. The advantages and disadvantages of the single imaging modality are discussed with a special focus on preclinical imaging for biodegradable implant research. Indeed, the investigation of a new implant commonly requires histological examination, which is invasive and does not allow longitudinal studies, thus requiring a large number of animals for preclinical testing. For this reason, an update of the multimodal and multi-parametric imaging capabilities will be here presented with a specific focus on modern biomaterial research.


Sign in / Sign up

Export Citation Format

Share Document