Genetics of juvenile rheumatic diseases

Author(s):  
Anne Hinks ◽  
Wendy Thomson

Juvenile rheumatic diseases are heterogeneous, complex genetic diseases; to date only juvenile idiopathic arthritis (JIA) has been extensively studied in terms of identifying genetic risk factors. The MHC region is a well-established risk factor but in the last few years candidate gene and large-scale genome-wide association studies have been utilized in the search for non-HLA risk factors. There are now 17 JIA susceptibility loci which reach the genome-wide significance threshold for association and a further 7 regions with evidence for association in more than one study. In addition, some subtype-specific associations are emerging. These risk loci now need to be investigated further using fine-mapping strategies and then appropriate functional studies to show how the variant alters the gene function. This knowledge will not only lead to a better understanding of disease pathogenesis for juvenile rheumatic diseases but may also aid in the classification of these heterogeneous diseases. It may identify new pathways for potential therapeutic targets and help in the prediction of disease outcome and response to treatment.

Author(s):  
Anne Hinks ◽  
Wendy Thomson

Juvenile rheumatic diseases are heterogeneous, complex genetic diseases; to date only juvenile idiopathic arthritis (JIA) has been extensively studied in terms of identifying genetic risk factors. The MHC region is a well-established risk factor but in the last few years candidate gene and large-scale genome-wide association studies have been utilized in the search for non-HLA risk factors. There are now 17 JIA susceptibility loci which reach the genome-wide significance threshold for association and a further 7 regions with evidence for association in more than one study. In addition, some subtype-specific associations are emerging. These risk loci now need to be investigated further using fine-mapping strategies and then appropriate functional studies to show how the variant alters the gene function. This knowledge will not only lead to a better understanding of disease pathogenesis for juvenile rheumatic diseases but may also aid in the classification of these heterogeneous diseases. It may identify new pathways for potential therapeutic targets and help in the prediction of disease outcome and response to treatment.


Author(s):  
Anne Hinks ◽  
Wendy Thomson

Juvenile rheumatic diseases are heterogeneous, complex genetic diseases; to date only juvenile idiopathic arthritis (JIA) has been extensively studied in terms of identifying genetic risk factors. The MHC region is a well-established risk factor but in the last few years candidate gene and genome-wide association studies have been utilized in the search for non-HLA risk factors. There are now an additional 12 JIA susceptibility loci with evidence for association in more than one study. In addition, some subtype-specific associations are emerging. These risk loci now need to be investigated further using fine-mapping strategies and then appropriate functional studies to show how the variant alters the gene function. This knowledge will not only lead to a better understanding of disease pathogenesis for juvenile rheumatic diseases but may also aid in the classification of these heterogeneous diseases. It may identify new pathways for potential therapeutic targets and help in the prediction of disease outcome and response to treatment.


Author(s):  
Elena Lopez-Isac ◽  
Anne Hinks ◽  
Wendy Thomson

Juvenile rheumatic diseases are heterogeneous, complex genetic diseases; to date only juvenile idiopathic arthritis (JIA) has been extensively studied in terms of identifying genetic risk factors. The MHC region is a well-established risk factor but in the last few years candidate gene and large-scale genome-wide association studies have been utilized in the search for non-HLA risk factors. There are now 17 JIA susceptibility loci which reach the genome-wide significance threshold for association and a further 7 regions with evidence for association in more than one study. In addition, some subtype-specific associations are emerging. These risk loci now need to be investigated further using fine-mapping strategies and then appropriate functional studies to show how the variant alters the gene function. This knowledge will not only lead to a better understanding of disease pathogenesis for juvenile rheumatic diseases but may also aid in the classification of these heterogeneous diseases. It may identify new pathways for potential therapeutic targets and help in the prediction of disease outcome and response to treatment.


2014 ◽  
Vol 24 (1) ◽  
pp. 12-19 ◽  
Author(s):  
A. A. E. Vinkhuyzen ◽  
N. R. Wray

G × E in psychiatry may explain why environmental risk factors have big impact in some individuals but not in others, and conversely why relatives that are genetically at risk for disease do not all develop disease. Here we discuss two novel methods that use an aggregate genome-wide measure of genetic risk to detect G × E and estimate its effect in the population using data currently available and data we anticipate will be available in the near future. The first method exploits summary statistics from large-scale genome-wide association studies ignorant of the environmental conditions and detects G × E in an out-of-sample risk-profiling framework. The second method relies on larger samples and is based on a mixed linear model framework. It estimates variance explained directly from single nucleotide polymorphisms and environmental measures. Both methods have great potential to improve public health interventions focusing on risk-based screening that is informed by both genetic and environmental risk factors.


2018 ◽  
Vol 35 (14) ◽  
pp. 2512-2514 ◽  
Author(s):  
Bongsong Kim ◽  
Xinbin Dai ◽  
Wenchao Zhang ◽  
Zhaohong Zhuang ◽  
Darlene L Sanchez ◽  
...  

Abstract Summary We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. Availability and implementation GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. Supplementary information Supplementary data are available at Bioinformatics online.


2012 ◽  
Vol 215 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Georg Homuth ◽  
Alexander Teumer ◽  
Uwe Völker ◽  
Matthias Nauck

The metabolome, defined as the reflection of metabolic dynamics derived from parameters measured primarily in easily accessible body fluids such as serum, plasma, and urine, can be considered as the omics data pool that is closest to the phenotype because it integrates genetic influences as well as nongenetic factors. Metabolic traits can be related to genetic polymorphisms in genome-wide association studies, enabling the identification of underlying genetic factors, as well as to specific phenotypes, resulting in the identification of metabolome signatures primarily caused by nongenetic factors. Similarly, correlation of metabolome data with transcriptional or/and proteome profiles of blood cells also produces valuable data, by revealing associations between metabolic changes and mRNA and protein levels. In the last years, the progress in correlating genetic variation and metabolome profiles was most impressive. This review will therefore try to summarize the most important of these studies and give an outlook on future developments.


2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009315
Author(s):  
Ardalan Naseri ◽  
Junjie Shi ◽  
Xihong Lin ◽  
Shaojie Zhang ◽  
Degui Zhi

Inference of relationships from whole-genome genetic data of a cohort is a crucial prerequisite for genome-wide association studies. Typically, relationships are inferred by computing the kinship coefficients (ϕ) and the genome-wide probability of zero IBD sharing (π0) among all pairs of individuals. Current leading methods are based on pairwise comparisons, which may not scale up to very large cohorts (e.g., sample size >1 million). Here, we propose an efficient relationship inference method, RAFFI. RAFFI leverages the efficient RaPID method to call IBD segments first, then estimate the ϕ and π0 from detected IBD segments. This inference is achieved by a data-driven approach that adjusts the estimation based on phasing quality and genotyping quality. Using simulations, we showed that RAFFI is robust against phasing/genotyping errors, admix events, and varying marker densities, and achieves higher accuracy compared to KING, the current leading method, especially for more distant relatives. When applied to the phased UK Biobank data with ~500K individuals, RAFFI is approximately 18 times faster than KING. We expect RAFFI will offer fast and accurate relatedness inference for even larger cohorts.


2020 ◽  
Vol 21 (16) ◽  
pp. 5835
Author(s):  
Maria-Ancuta Jurj ◽  
Mihail Buse ◽  
Alina-Andreea Zimta ◽  
Angelo Paradiso ◽  
Schuyler S. Korban ◽  
...  

Genome-wide association studies (GWAS) are useful in assessing and analyzing either differences or variations in DNA sequences across the human genome to detect genetic risk factors of diseases prevalent within a target population under study. The ultimate goal of GWAS is to predict either disease risk or disease progression by identifying genetic risk factors. These risk factors will define the biological basis of disease susceptibility for the purposes of developing innovative, preventative, and therapeutic strategies. As single nucleotide polymorphisms (SNPs) are often used in GWAS, their relevance for triple negative breast cancer (TNBC) will be assessed in this review. Furthermore, as there are different levels and patterns of linkage disequilibrium (LD) present within different human subpopulations, a plausible strategy to evaluate known SNPs associated with incidence of breast cancer in ethnically different patient cohorts will be presented and discussed. Additionally, a description of GWAS for TNBC will be presented, involving various identified SNPs correlated with miRNA sites to determine their efficacies on either prognosis or progression of TNBC in patients. Although GWAS have identified multiple common breast cancer susceptibility variants that individually would result in minor risks, it is their combined effects that would likely result in major risks. Thus, one approach to quantify synergistic effects of such common variants is to utilize polygenic risk scores. Therefore, studies utilizing predictive risk scores (PRSs) based on known breast cancer susceptibility SNPs will be evaluated. Such PRSs are potentially useful in improving stratification for screening, particularly when combining family history, other risk factors, and risk prediction models. In conclusion, although interpretation of the results from GWAS remains a challenge, the use of SNPs associated with TNBC may elucidate and better contextualize these studies.


Sign in / Sign up

Export Citation Format

Share Document