Multiple Sclerosis

Author(s):  
Pavan Bhargava ◽  
Peter A. Calabresi

Multiple sclerosis is a chronic demyelinating neurological disorder of the brain and spinal cord, with both inflammatory and degenerative components. Current treatment strategies utilize immunomodulatory and immunosuppressive agents to reduce the inflammatory disease activity and retard accumulation of disability. Future challenges for treatment include identifying agents that will promote remyelination and axonal protection to help impact progressive forms of multiple sclerosis. This chapter discusses currently available disease modifying therapies, agents currently in phase 2/3 trials, and future directions in the treatment of multiple sclerosis.

Author(s):  
Diane Moujalled ◽  
Andreas Strasser ◽  
Jeffrey R. Liddell

AbstractTightly orchestrated programmed cell death (PCD) signalling events occur during normal neuronal development in a spatially and temporally restricted manner to establish the neural architecture and shaping the CNS. Abnormalities in PCD signalling cascades, such as apoptosis, necroptosis, pyroptosis, ferroptosis, and cell death associated with autophagy as well as in unprogrammed necrosis can be observed in the pathogenesis of various neurological diseases. These cell deaths can be activated in response to various forms of cellular stress (exerted by intracellular or extracellular stimuli) and inflammatory processes. Aberrant activation of PCD pathways is a common feature in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, resulting in unwanted loss of neuronal cells and function. Conversely, inactivation of PCD is thought to contribute to the development of brain cancers and to impact their response to therapy. For many neurodegenerative diseases and brain cancers current treatment strategies have only modest effect, engendering the need for investigations into the origins of these diseases. With many diseases of the brain displaying aberrations in PCD pathways, it appears that agents that can either inhibit or induce PCD may be critical components of future therapeutic strategies. The development of such therapies will have to be guided by preclinical studies in animal models that faithfully mimic the human disease. In this review, we briefly describe PCD and unprogrammed cell death processes and the roles they play in contributing to neurodegenerative diseases or tumorigenesis in the brain. We also discuss the interplay between distinct cell death signalling cascades and disease pathogenesis and describe pharmacological agents targeting key players in the cell death signalling pathways that have progressed through to clinical trials.


2012 ◽  
Vol 18 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Martin S. Weber ◽  
Til Menge ◽  
Klaus Lehmann-Horn ◽  
Helena C. Kronsbein ◽  
Uwe Zettl ◽  
...  

2021 ◽  
pp. 109980042110500
Author(s):  
Pamela Newland ◽  
Yelyzaveta Basan ◽  
Ling Chen ◽  
Gregory Wu

Multiple sclerosis (MS), an inflammatory neurodegenerative disease of the central nervous system (CNS), afflicts over one per thousand people in the United States. The pathology of MS typically involves lesions in several regions, including the brain and spinal cord. The manifestation of MS is variable and carries great potential to negatively impact quality of life (QOL). Evidence that inflammatory markers are related to depression in MS is accumulating. However, there are barriers in precisely identifying the biological mechanisms underlying depression and inflammation. Analysis of cytokines provides one promising approach for understanding the mechanisms that may contribute to MS symptoms. Methods: In this pilot study, we measured salivary levels of interleukin (IL)-6, IL-1beta (β), and IL-10 in 24 veterans with MS. Descriptive statistics were reported and Pearson correlation coefficients were obtained between cytokines and depression. Results: The anti-inflammatory cytokine IL-10 was significantly negatively associated with depression in veterans with MS (r = −0.47, p = .024). Conclusion: Cytokines may be useful for elucidating biological mechanisms associated with the depression and a measure for nurses caring for veterans with MS.


2020 ◽  
pp. 135245852093764
Author(s):  
Yael Hacohen ◽  
Brenda Banwell ◽  
Olga Ciccarelli

Paediatric multiple sclerosis (MS) is associated with higher relapse rate, rapid magnetic resonance imaging lesion accrual early in the disease course and worse cognitive outcome and physical disability in the long term compared to adult-onset disease. Current treatment strategies are largely centre-specific and reliant on adult protocols. The aim of this review is to examine which treatment options should be considered first line for paediatric MS and we attempt to answer the question if injectable first-line disease-modifying therapies (DMTs) are still an optimal option. To answer this question, we review the effects of early onset disease on clinical course and outcomes, with specific considerations on risks and benefits of treatments for paediatric MS. Considering the impact of disease activity on brain atrophy, cognitive impairment and development of secondary progressive MS at a younger age, we would recommend treating paediatric MS as a highly active disease, favouring the early use of highly effective DMTs rather than injectable DMTs.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
James P. Harris ◽  
Justin C. Burrell ◽  
Laura A. Struzyna ◽  
H. Isaac Chen ◽  
Mijail D. Serruya ◽  
...  

AbstractParkinson’s disease (PD) is the second most common progressive neurodegenerative disease, affecting 1–2% of people over 65. The classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in a loss of their long axonal projections to the striatum. Current treatment strategies such as dopamine replacement and deep brain stimulation (DBS) can only minimize the symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Regenerative medicine-based solutions are being aggressively pursued with the goal of restoring dopamine levels in the striatum, with several emerging techniques attempting to reconstruct the entire nigrostriatal pathway—a key goal to recreate feedback pathways to ensure proper dopamine regulation. Although many pharmacological, genetic, and optogenetic treatments are being developed, this article focuses on the evolution of transplant therapies for the treatment of PD, including fetal grafts, cell-based implants, and more recent tissue-engineered constructs. Attention is given to cell/tissue sources, efficacy to date, and future challenges that must be overcome to enable robust translation into clinical use. Emerging regenerative medicine therapies are being developed using neurons derived from autologous stem cells, enabling the construction of patient-specific constructs tailored to their particular extent of degeneration. In the upcoming era of restorative neurosurgery, such constructs may directly replace SNpc neurons, restore axon-based dopaminergic inputs to the striatum, and ameliorate motor deficits. These solutions may provide a transformative and scalable solution to permanently replace lost neuroanatomy and improve the lives of millions of people afflicted by PD.


2021 ◽  
pp. C1-C1
Author(s):  
Takayuki Obata ◽  
Jeff Kershaw ◽  
Akifumi Hagiwara ◽  
Shigeki Aoki

Sign in / Sign up

Export Citation Format

Share Document