scholarly journals Helium abundances and its radial gradient from the spectra of H ii regions and ring nebulae of the Milky Way

2020 ◽  
Vol 496 (3) ◽  
pp. 2726-2742 ◽  
Author(s):  
J E Méndez-Delgado ◽  
C Esteban ◽  
J García-Rojas ◽  
K Z Arellano-Córdova ◽  
M Valerdi

ABSTRACT We determine the radial abundance gradient of helium in the disc of the Galaxy from published spectra of 19 H ii regions and ring nebulae surrounding massive O-type stars. We revise the Galactocentric distances of the objects considering Gaia DR2 parallaxes (Gaia Collaboration 2018) and determine the physical conditions and the ionic abundance of He+ in a homogeneous way, using between 3 and 10 He i recombination lines in each object. We estimate the total He abundance of the nebulae and its radial abundance gradient using four different ionization correction factor (ICF; He) schemes. The slope of the gradient is always negative and weakly dependent on the ICF(He) scheme, especially when only the objects with log(η) < 0.9 are considered. The slope values go from −0.0078 to −0.0044 dex kpc−1, consistent with the predictions of chemical evolution models of the Milky Way and chemodynamical simulations of disc galaxies. Finally, we estimate the abundance deviations of He, O, and N in a sample of ring nebulae around Galactic Wolf–Rayet stars, finding a quite similar He overabundance of about +0.24 ± 0.11 dex in three stellar ejecta ring nebulae.

2018 ◽  
Vol 616 ◽  
pp. L9 ◽  
Author(s):  
G. Monari ◽  
B. Famaey ◽  
I. Carrillo ◽  
T. Piffl ◽  
M. Steinmetz ◽  
...  

We measure the escape speed curve of the Milky Way based on the analysis of the velocity distribution of ~2850 counter-rotating halo stars from the Gaia Data Release 2. The distances were estimated through the StarHorse code, and only stars with distance errors smaller than 10% were used in the study. The escape speed curve is measured at Galactocentric radii ranging from ~5 kpc to ~10.5 kpc. The local Galactic escape at the Sun’s position is estimated to be ve(r⊙) = 580 ± 63 km s−1, and it rises towards the Galactic centre. Defined as the minimum speed required to reach three virial radii, our estimate of the escape speed as a function of radius implies for a Navarro–Frenk–White profile and local circular velocity of 240 km s−1 a dark matter mass M200 = 1.28−0.50+0.68 × 1012 M⊙ and a high concentration c200 = 11.09−1.79+2.94. Assuming the mass-concentration relation of ΛCDM, we obtain M200 = 1.55−0.51+0.64 × 1012 M⊙ and c200 = 7.93−0.27+0.33 for a local circular velocity of 228 km s−1.


2021 ◽  
Vol 923 (2) ◽  
pp. 198
Author(s):  
James M. De Buizer ◽  
Wanggi Lim ◽  
Mengyao Liu ◽  
Nicole Karnath ◽  
James T. Radomski

Abstract We present our third set of results from our mid-infrared imaging survey of Milky Way Giant H ii regions with our detailed analysis of W49A, one of the most distant, yet most luminous, GH ii regions in the Galaxy. We used the FORCAST instrument on the Stratospheric Observatory For Infrared Astronomy (SOFIA) to obtain 20 and 37 μm images of the entire ∼5.′0 × 3.′5 infrared-emitting area of W49A at a spatial resolution of ∼3″. Utilizing these SOFIA data in conjunction with previous multiwavelength observations from the near-infrared to radio, including Spitzer-IRAC and Herschel-PACS archival data, we investigate the physical nature of individual infrared sources and subcomponents within W49A. For individual compact sources, we used the multiwavelength photometry data to construct spectral energy distributions (SEDs) and fit them with massive young stellar object (MYSO) SED models and find 22 sources that are likely to be MYSOs. Ten new sources are identified for the first time in this work. Even at 37 μm we are unable to detect infrared emission from the sources on the western side of the extremely extinguished ring of compact radio emission sources known as the Welch Ring. Utilizing multiwavelength data, we derived luminosity-to-mass ratio and virial parameters of the extended radio subregions of W49A to estimate their relative ages and find that overall the subcomponents of W49A have a very small spread in evolutionary state compared to our previously studied GH ii regions.


2020 ◽  
Vol 494 (1) ◽  
pp. 1134-1142
Author(s):  
Jacques P Vallée

ABSTRACT This study extends to the structure of the Galaxy. Our main goal is to focus on the first spiral arm beyond the Perseus arm, often called the Cygnus arm or the ‘Outer Norma’ arm, by appraising the distributions of the masers near the Cygnus arm. The method is to employ masers whose trigonometric distances were measured with accuracy. The maser data come from published literature – see column 8 in Table 1 here, having been obtained via the existing networks (US VLBA, the Japanese VERA, the European VLBI, and the Australian LBA). The new results for Cygnus are split in two groups: those located near a recent CO-fitted global model spiral arm and those congregating within an ‘interarm island’ located halfway between the Perseus arm and the Cygnus arm. Next, we compare this island with other similar interarm objects near other spiral arms. Thus, we delineate an interarm island (6 × 2 kpc) located between the two long spiral arms (Cygnus and Perseus arms); this is reminiscent of the small ‘Local Orion arm’ (4 × 2 kpc) found earlier between the Perseus and Sagittarius arms and of the old ‘Loop’ (2 × 0.5 kpc) found earlier between the Sagittarius and Scutum arms. Various arm models are compared, based on observational data (masers, H II regions, H I gas, young stars, CO 1–0 gas).


2019 ◽  
Vol 489 (4) ◽  
pp. 4565-4573
Author(s):  
Richa Kundu ◽  
José G Fernández-Trincado ◽  
Dante Minniti ◽  
Harinder P Singh ◽  
Edmundo Moreno ◽  
...  

ABSTRACTWe report the identification of possible extended star debris candidates beyond the cluster tidal radius of NGC 6362 based on the second Gaia data release (Gaia DR2). We found 259 objects possibly associated with the cluster lying in the vicinity of the giant branch and 1–2 magnitudes fainter/brighter than the main-sequence turn-off in the cluster colour–magnitude diagram and which cover an area on the sky of ∼4.1 deg2 centred on the cluster. We traced back the orbit of NGC 6362 in a realistic Milky Way potential, using the gravpot16 package, for 3 Gyr. The orbit shows that the cluster shares similar orbital properties as the inner disc, having peri-/apogalactic distances, and maximum vertical excursion from the Galactic plane inside the corotation radius (CR), moving inwards from CR radius to visit the inner regions of the Milky Way. The dynamical history of the cluster reveals that it has crossed the Galactic disc several times in its lifetime and has recently undergone a gravitational shock, ∼15.9 Myr ago, suggesting that less than 0.1 per cent of its mass has been lost during the current disc-shocking event. Based on the cluster’s orbit and position in the Galaxy, we conclude that the possible extended star debris candidates are a combined effect of the shocks from the Galactic disc and evaporation from the cluster. Lastly, the evolution of the vertical component of the angular momentum shows that the cluster is strongly affected dynamically by the Galactic bar potential.


2017 ◽  
Vol 13 (S334) ◽  
pp. 209-212
Author(s):  
Tobias Buck ◽  
Andrea Macciò ◽  
Melissa Ness ◽  
Aura Obreja ◽  
Aaron Dutton

AbstractHigh resolution cosmological and hydrodynamical simulations have reached a resolution able to resolve in a self consistent way the disc of our galaxy, the galaxy center and the satellites orbiting around it. We present first results from the NIHAO-UHD project, a set of very high-resolution baryonic zoom-in simulations of Milky Way mass disc galaxies. These simulations model the full cosmological assembly history of the galaxies and their satellite system using the same, well tested physics as the NIHAO project. We show that these simulations can self-consistently reproduce the observed kinematical and morphological features of the X-shaped bulge observed in our own Milky Way.


1958 ◽  
Vol 8 ◽  
pp. 949-950
Author(s):  
D. A. Rojkovsky

The discovery of globules by Bok and Reilly leads to various speculation concerning their cosmogonical meaning as protostellar bodies in our galaxy.It is well known that the most favorable conditions for the discovery and study of globules are reached when they are connected with diffuse galactic nebulae (Dufay). Observations show that in this case globules possess various and generally irregular shapes. It is quite probable that these globules are connected with large dark clouds, genetically linked with bright nebulae. The number of globules in a nebula depends essentially on the peculiarity of its structure. Nevertheless the total area of the sky covered by the nebulae is relatively small and their physical conditions depending on nearby hot stars are peculiar. Consequently it is hardly possible to suppose that the properties of globules present in nebulae are the same as in the other regions of the galaxy. It is important to collect more data concerning the spatial distribution of globules, their density, sizes etc. The stellar clouds of the Milky Way give some possibility for further study in this respect. In the case of a sufficiently dense stellar field the projecting globules can be discovered as some fluctuations in the stellar population as observed on the photograph.


Author(s):  
C Esteban ◽  
F Bresolin ◽  
J García-Rojas ◽  
L Toribio San Cipriano

Abstract We present deep spectrophotometry of 18 H ii regions in the nearby massive spiral galaxies M 101 and M 31. We have obtained direct determinations of electron temperature in all the nebulae. We detect the C ii 4267 Å line in several H ii regions, permitting to derive the radial gradient of C/H in both galaxies. We also determine the radial gradients of O/H, N/O, Ne/O, S/O, Cl/O and Ar/O ratios. As in other spiral galaxies, the C/H gradients are steeper than those of O/H producing negative slopes of the C/O gradient. The scatter of the abundances of O with respect to the gradient fittings do not support the presence of significant chemical inhomogeneities across the discs of the galaxies, especially in the case of M101. We find trends in the S/O, Cl/O and Ar/O ratios as a function of O/H in M101 that can be reduced using Te indicators different from the standard ones for calculating some ionic abundances. The distribution of the N/O ratio with respect to O/H is rather flat in M31, similarly to previous findings for the Milky Way. Using the disc effective radius – Re – as a normalization parameter for comparing gradients, we find that the latest estimates of Re for the Milky Way provide an excess of metallicity in apparent contradiction with the mass-metallicity relation; a value about two times larger might solve the problem. Finally, using different abundance ratios diagrams we find that the enrichment timescales of C and N result to be fairly similar despite their different nucleosynthetic origin.


2019 ◽  
Vol 14 (S351) ◽  
pp. 420-421
Author(s):  
Julio A. Carballo-Bello

AbstractIn recent years, we have gathered enough evidence showing that most of the Galactic globular clusters extend well beyond their King tidal radii and fill their Jacobi radii in the form of “extended stellar haloes”. In some cases, because of the interaction with the Milky Way, stars are able to exceed the Jacobi radius, generating tidal tails which may be used to trace the mass distribution in the Galaxy. In this work, we use the precious information provided by the space mission Gaia (photometry, parallaxes and proper motions) to analyze NGC 362 in the search for member stars in its surroundings. Our preliminar results suggest that it is possible to identify member stars and tidal features up to distances of a few degrees from the globular cluster center.


2011 ◽  
Vol 7 (S283) ◽  
pp. 438-439
Author(s):  
Jackie B. Milingo ◽  
Richard B. C. Henry ◽  
Karen B. Kwitter ◽  
Bruce Balick

AbstractWe examine the abundance gradient in the Milky Way disk via homogeneously determined data for 124 Galactic planetary nebulae (PNe). We present recent results from a detailed regression analysis of the O gradient. With O, Ne, S, Cl, and Ar available and a range of galactocentric distance (Rg) from 0.9 to 21 kpc, we present additional exploration of the disk radial gradient by statistically analyzing a series of short segments of increasing average Rg.


Author(s):  
A. P. Topchieva ◽  

Studying the formation of massive stars in our Galaxy and in other galaxies is one of the possibilities to connect the information obtained for the regions of star formation in general. This study presents statistical and theoretical data on infrared ring nebulae (IRRN) in our Galaxy and the galaxy M33, which is located not far from us and in the plane of sky, which is convenient for selecting individual objects. In this paper, comparisons of fluxes for 258 star-forming complexes in M33, extragalactic of star formation complexes, and for IRRN in our Galaxy are shown. A theoretical calculation of the distribution of polycyclic aromatic hydrocarbons using DustEM has been carried out.


Sign in / Sign up

Export Citation Format

Share Document