scholarly journals Asteroseismic masses of four evolved planet-hosting stars using SONG and TESS: resolving the retired A-star mass controversy

2020 ◽  
Vol 496 (4) ◽  
pp. 5423-5435
Author(s):  
Sai Prathyusha Malla ◽  
Dennis Stello ◽  
Daniel Huber ◽  
Benjamin T Montet ◽  
Timothy R Bedding ◽  
...  

ABSTRACT The study of planet occurrence as a function of stellar mass is important for a better understanding of planet formation. Estimating stellar mass, especially in the red giant regime, is difficult. In particular, stellar masses of a sample of evolved planet-hosting stars based on spectroscopy and grid-based modelling have been put to question over the past decade with claims they were overestimated. Although efforts have been made in the past to reconcile this dispute using asteroseismology, results were inconclusive. In an attempt to resolve this controversy, we study four more evolved planet-hosting stars in this paper using asteroseismology, and we revisit previous results to make an informed study of the whole ensemble in a self-consistent way. For the four new stars, we measure their masses by locating their characteristic oscillation frequency, νmax, from their radial velocity time series observed by SONG. For two stars, we are also able to measure the large frequency separation, Δν, helped by extended SONG single-site and dual-site observations and new Transiting Exoplanet Survey Satellite observations. We establish the robustness of the νmax-only-based results by determining the stellar mass from Δν, and from both Δν and νmax. We then compare the seismic masses of the full ensemble of 16 stars with the spectroscopic masses from three different literature sources. We find an offset between the seismic and spectroscopic mass scales that is mass dependent, suggesting that the previously claimed overestimation of spectroscopic masses only affects stars more massive than about 1.6 M⊙.

2002 ◽  
Vol 185 ◽  
pp. 470-471
Author(s):  
H. Kjeldsen ◽  
T.R. Bedding ◽  
I.K. Baldry ◽  
S. Frandsen ◽  
H. Bruntt ◽  
...  

Kjeldsen et al. (1995) detected excess power in the GO subgiant η Boo from measurements of Balmer-line equivalent widths. The excess was at the expected level, and these authors were able to extract frequency separations and individual frequencies which agreed well with theoretical models (Christensen-Dalsgaard et al., 1995; Guenther & Demarque, 1996). A more detailed discussion of theoretical models for η Bootis was given by Di Mauro & Christensen-Dalsgaard (2001).Kjeldsen et al. (1995) estimated the average amplitude of the strongest modes to be 7 times solar, corresponding to 1.6 m/s in velocity. 13 individual oscillation modes were identified consistent with a large frequency separation of 40.3 μHz. We note, however, that a search for velocity oscillations in this star by Brown et al. (1997) failed to detect a signal, setting limits at a level below that expected on the basis of the Kjeldsen et al. result.In this paper we report further observations made in 1998. We observed this star in Balmer-line equivalent width with the 2.5-m Nordic Optical Telescope and in velocity with the 24-inch Lick CAT.


2019 ◽  
Vol 488 (4) ◽  
pp. 5400-5408 ◽  
Author(s):  
Mark A Norris ◽  
Glenn van de Ven ◽  
Sheila J Kannappan ◽  
Eva Schinnerer ◽  
Ryan Leaman

Abstract The discovery around the turn of the millennium of a population of very massive (M⋆ > 2 × 106 M⊙) compact stellar systems (CSS) with physical properties (radius, velocity dispersion, stellar mass etc.) that are intermediate between those of the classical globular cluster (GC) population and galaxies led to questions about their exact nature. Recently a consensus has emerged that these objects, usually called ultracompact dwarfs (UCDs), are a mass-dependent mixture of high-mass star clusters and remnant nuclei of tidally disrupted galaxies. The existence of genuine star clusters with stellar masses >107 M⊙ naturally leads to questions about the upper mass limit of the star cluster formation process. In this work we compile a comprehensive catalogue of CSS, and reinforce the evidence that the true ancient star cluster population has a maximum mass of M⋆ ∼ 5 × 107 M⊙, corresponding to a stellar mass at birth of close to 108 M⊙. We then discuss several physical and statistical mechanisms potentially responsible for creating this limiting mass.


2018 ◽  
Vol 14 (S343) ◽  
pp. 434-435
Author(s):  
Edward Jurua ◽  
Otto Trust ◽  
Felix Kampindi

AbstractThe Kepler Input Catalogue (KIC) misclassified a number of red giant stars as sub giants. This could have resulted from the large uncertainties in the KIC surface gravities. This resulted in 1523 stars which were recently classified as red giant stars. The cluster membership of the 1523 red giant stars was determined using age, distance modulus, and variation of colour magnitude with large frequency separation. We found that one star, KIC 5110739, is a member of NGC 6819.


2013 ◽  
Vol 434 (2) ◽  
pp. 1668-1673 ◽  
Author(s):  
S. Hekker ◽  
Y. Elsworth ◽  
S. Basu ◽  
A. Mazumdar ◽  
V. Silva Aguirre ◽  
...  

2015 ◽  
Vol 11 (A29B) ◽  
pp. 544-547
Author(s):  
Lester Fox-Machado ◽  
Dan Deras

AbstractThe preliminary results of an analysis of the red giant star KIC 5701829 observed for 29 days in short-cadence mode with theKeplersatellite are reported. The oscillation spectrum of this star is characterized by the presence of a well-defined solar-like oscillation pattern due to acoustic modes. The characterization of the power spectrum has been performed following three basics steps commonly used in the analysis of solar-like oscillations: fitting and correcting for the background, estimating the frequency of maximum power (νmax) and the large separation (Δν), and extracting individual frequencies. We have found that the frequency of maximum oscillation power, νmax, and the mean large frequency separation, Δν, are around, 143 and 12 μHz, respectively. The global asteroseismic parameters along with atmospheric parameters from the literature allow us to infer about evolutionary status of the star.


1973 ◽  
Vol 12 (2) ◽  
pp. 181-188
Author(s):  
Rafiq Ahmad

Like nations and civilizations, sciences also pass through period of crises when established theories are overthrown by the unpredictable behaviour of events. Economics is passing through such a crisis. The challenge thrown by the Great Depression of early 1930s took a decade before Keynes re-established the supremacy of economics. But this supremacy has again been upset by the crisis of poverty in the vast under-developed world which attained political independence after the Second World War. Poverty had always existed but never before had it been of such concern to economists as during the past twenty five years or so. Economic literature dealing with this problem has piled up but so have the agonies of poverty. No plausible and well-integrated theory of economic development or under-development has emerged so far, though brilliant advances have been made in isolated directions.


Author(s):  
Rocco J. Rotello ◽  
Timothy D. Veenstra

: In the current omics-age of research, major developments have been made in technologies that attempt to survey the entire repertoire of genes, transcripts, proteins, and metabolites present within a cell. While genomics has led to a dramatic increase in our understanding of such things as disease morphology and how organisms respond to medications, it is critical to obtain information at the proteome level since proteins carry out most of the functions within the cell. The primary tool for obtaining proteome-wide information on proteins within the cell is mass spectrometry (MS). While it has historically been associated with the protein identification, developments over the past couple of decades have made MS a robust technology for protein quantitation as well. Identifying quantitative changes in proteomes is complicated by its dynamic nature and the inability of any technique to guarantee complete coverage of every protein within a proteome sample. Fortunately, the combined development of sample preparation and MS methods have made it capable to quantitatively compare many thousands of proteins obtained from cells and organisms.


Author(s):  
John Hunsley ◽  
Eric J. Mash

Evidence-based assessment relies on research and theory to inform the selection of constructs to be assessed for a specific assessment purpose, the methods and measures to be used in the assessment, and the manner in which the assessment process unfolds. An evidence-based approach to clinical assessment necessitates the recognition that, even when evidence-based instruments are used, the assessment process is a decision-making task in which hypotheses must be iteratively formulated and tested. In this chapter, we review (a) the progress that has been made in developing an evidence-based approach to clinical assessment in the past decade and (b) the many challenges that lie ahead if clinical assessment is to be truly evidence-based.


2021 ◽  
pp. 088506662199232
Author(s):  
Xiaojuan Zhang ◽  
Xin Li

Septic shock with multiple organ failure is a devastating situation in clinical settings. Through the past decades, much progress has been made in the management of sepsis and its underlying pathogenesis, but a highly effective therapeutic has not been developed. Recently, macromolecules such as histones have been targeted in the treatment of sepsis. Histones primarily function as chromosomal organizers to pack DNA and regulate its transcription through epigenetic mechanisms. However, a growing body of research has shown that histone family members can also exert cellular toxicity once they relocate from the nucleus into the extracellular space. Heparin, a commonly used anti-coagulant, has been shown to possess life-saving capabilities for septic patients, but the potential interplay between heparin and extracellular histones has not been investigated. In this review, we summarize the pathogenic roles of extracellular histones and the therapeutic roles of heparin in the development and management of sepsis and septic shock.


2020 ◽  
Vol 501 (2) ◽  
pp. 1568-1590
Author(s):  
Lukas J Furtak ◽  
Hakim Atek ◽  
Matthew D Lehnert ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT We present new measurements of the very low mass end of the galaxy stellar mass function (GSMF) at z ∼ 6−7 computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Field clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{\star }\gt 10^{6}\, \text{M}_{\odot}$ and we find the z ∼ 6−7 GSMF to be best parametrized by a modified Schechter function that allows for a turnover at very low masses. Using a Monte Carlo Markov chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $\alpha \simeq -1.96_{-0.08}^{+0.09}$ and a turnover at $\log (M_T/\text{M}_{\odot})\simeq 7.10_{-0.56}^{+0.17}$ with a curvature of $\beta \simeq 1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star formation history (SFH) and low dust attenuation, AV ≤ 0.2. We find that the z ∼ 6−7 GSMF, in particular its very low mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $\alpha \simeq -1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $\alpha \simeq -2.34_{-0.10}^{+0.11}$ when allowing AV of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.


Sign in / Sign up

Export Citation Format

Share Document