scholarly journals Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM III. Elemental depletion and shortcomings of the current physico-chemical models

2020 ◽  
Vol 497 (2) ◽  
pp. 2309-2319
Author(s):  
V Wakelam ◽  
W Iqbal ◽  
J-P Melisse ◽  
P Gratier ◽  
M Ruaud ◽  
...  

ABSTRACT We present a study of the elemental depletion in the interstellar medium. We combined the results of a Galactic model describing the gas physical conditions during the formation of dense cores with a full-gas-grain chemical model. During the transition between diffuse and dense medium, the reservoirs of elements, initially atomic in the gas, are gradually depleted on dust grains (with a phase of neutralization for those which are ions). This process becomes efficient when the density is larger than 100 cm−3. If the dense material goes back into diffuse conditions, these elements are brought back in the gas phase because of photo-dissociations of the molecules on the ices, followed by thermal desorption from the grains. Nothing remains on the grains for densities below 10 cm−3 or in the gas phase in a molecular form. One exception is chlorine, which is efficiently converted at low density. Our current gas–grain chemical model is not able to reproduce the depletion of atoms observed in the diffuse medium except for Cl, which gas abundance follows the observed one in medium with densities smaller than 10 cm−3. This is an indication that crucial processes (involving maybe chemisorption and/or ice irradiation profoundly modifying the nature of the ices) are missing.

2008 ◽  
Vol 4 (S251) ◽  
pp. 221-226
Author(s):  
Isabelle Cherchneff ◽  
Simon Lilly

AbstractWe present new chemical models of supernova (SN) ejecta based on a chemical kinetic approach. We focus on the formation of inorganic and organic molecules including gas phase dust precursors, and consider zero-metallicity progenitor, massive supernovae and nearby core-collapse supernovae such as SN1987A. We find that both types are forming large amounts of molecules in their ejecta at times as early as 200 days after explosion. Upper limits on the dust formation budget are derived. Our results on dust precursors do not agree with existing studies on dust condensation in SN ejecta. We conclude that PMSNe could be the first non-primodial molecule providers in the early universe, ejecting up to 34% of their progenitor mass under molecular form to the pristine, local gas.


2013 ◽  
Vol 9 (S296) ◽  
pp. 392-394
Author(s):  
A. Sarangi ◽  
I. Cherchneff

AbstractWe model the fluxes in the infrared and submillimeter domain using the dust chemical composition and mass derived from the physico-chemical model of a Type II-P supernova ejecta with stellar progenitor of 19 M⊙. Our results highlight that the dust mass predicted to rise over time in our chemical models from 10−2 to 10−1M⊙ satisfactorily reproduce the infrared and sub millimeter fluxes. They confirm that type II-P SNe are efficient but moderate dust makers in galaxies.


2020 ◽  
Vol 498 (1) ◽  
pp. 276-291
Author(s):  
Beatrice M Kulterer ◽  
Maria N Drozdovskaya ◽  
Audrey Coutens ◽  
Sébastien Manigand ◽  
Gwendoline Stéphan

ABSTRACT Physicochemical models can be powerful tools to trace the chemical evolution of a protostellar system and allow to constrain its physical conditions at formation. The aim of this work is to assess whether source-tailored modelling is needed to explain the observed molecular abundances around young, low-mass protostars or if, and to what extent, generic models can improve our understanding of the chemistry in the earliest stages of star formation. The physical conditions and the abundances of simple, most abundant molecules based on three models are compared. After establishing the discrepancies between the calculated chemical output, the calculations are redone with the same chemical model for all three sets of physical input parameters. With the differences arising from the chemical models eliminated, the output is compared based on the influence of the physical model. Results suggest that the impact of the chemical model is small compared to the influence of the physical conditions, with considered time-scales having the most drastic effect. Source-tailored models may be simpler by design; however, likely do not sufficiently constrain the physical and chemical parameters within the global picture of star-forming regions. Generic models with more comprehensive physics may not provide the optimal match to observations of a particular protostellar system, but allow a source to be studied in perspective of other star-forming regions.


2020 ◽  
Vol 645 ◽  
pp. A28
Author(s):  
Emeric Bron ◽  
Evelyne Roueff ◽  
Maryvonne Gerin ◽  
Jérôme Pety ◽  
Pierre Gratier ◽  
...  

Context. The ionization fraction in the neutral interstellar medium (ISM) plays a key role in the physics and chemistry of the ISM, from controlling the coupling of the gas to the magnetic field to allowing fast ion-neutral reactions that drive interstellar chemistry. Most estimations of the ionization fraction have relied on deuterated species such as DCO+, whose detection is limited to dense cores representing an extremely small fraction of the volume of the giant molecular clouds that they are part of. As large field-of-view hyperspectral maps become available, new tracers may be found. The growth of observational datasets is paralleled by the growth of massive modeling datasets and new methods need to be devised to exploit the wealth of information they contain. Aims. We search for the best observable tracers of the ionization fraction based on a grid of astrochemical models, with the broader aim of finding a general automated method applicable to searching for tracers of any unobservable quantity based on grids of models. Methods. We built grids of models that randomly sample a large range of physical conditions (unobservable quantities such as gas density, temperature, elemental abundances, etc.) and computed the corresponding observables (line intensities, column densities) and the ionization fraction. We estimated the predictive power of each potential tracer by training a random forest model to predict the ionization fraction from that tracer, based on these model grids. Results. In both translucent medium and cold dense medium conditions, we found several observable tracers with very good predictive power for the ionization fraction. Many tracers in cold dense medium conditions are found to be better and more widely applicable than the traditional DCO+/HCO+ ratio. We also provide simpler analytical fits for estimating the ionization fraction from the best tracers, and for estimating the associated uncertainties. We discuss the limitations of the present study and select a few recommended tracers in both types of conditions. Conclusions. The method presented here is very general and can be applied to the measurement of any other quantity of interest (cosmic ray flux, elemental abundances, etc.) from any type of model (PDR models, time-dependent chemical models, etc.).


2019 ◽  
Vol 486 (3) ◽  
pp. 4198-4202 ◽  
Author(s):  
V Wakelam ◽  
M Ruaud ◽  
P Gratier ◽  
I A Bonnell

ABSTRACT Molecular oxygen has been the subject of many observational searches as chemical models predicted it to be a reservoir of oxygen. Although it has been detected in two regions of the interstellar medium, its rarity is a challenge for astrochemical models. In this paper, we have combined the physical conditions computed with smoothed particle hydrodynamics simulations with our full gas–grain chemical model Nautilus, to study the predicted O2 abundance in interstellar material forming cold cores. We thus follow the chemical evolution of gas and ices in parcels of material from the diffuse interstellar conditions to the cold dense cores. Most of our predicted O2 abundances are below 10−8 (with respect to the total proton density) and the predicted column densities in simulated cold cores are at maximum a few 10−14 cm−2, in agreement with the non-detection limits. This low O2 abundance can be explained by the fact that, in a large fraction of the interstellar material, the atomic oxygen is depleted on to the grain surface (and hydrogenated to form H2O) before O2 can be formed in the gas-phase and protected from ultraviolet photodissociations. We could achieve this result only because we took into account the full history of the evolution of the physical conditions from the diffuse medium to the cold cores.


2016 ◽  
Author(s):  
Michael J. Lawler ◽  
Paul M. Winkler ◽  
Jaeseok Kim ◽  
Lars Ahlm ◽  
Jasmin Tröstl ◽  
...  

Abstract. New particle formation driven by acid-base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physico-chemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base:acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient that suggests a change to a mixed-phase state as the particles grew beyond this size. The reasons for the very acidic composition remain uncertain, but a possible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO2 to sulfate. These results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid-base pairs in particles as small as 10 nm.


2018 ◽  
Vol 609 ◽  
pp. A66 ◽  
Author(s):  
R. E. G. Machado ◽  
P. B. Tissera ◽  
G. B. Lima Neto ◽  
L. Sodré

Context. Galaxies are surrounded by extended gaseous halos that store significant fractions of chemical elements. These are syntethized by the stellar populations and later ejected into the circumgalactic medium (CGM) by different mechanism, of which supernova feedback is considered one of the most relevant. Aims. We aim to explore the properties of this metal reservoir surrounding star-forming galaxies in a cosmological context aiming to investigate the chemical loop between galaxies and their CGM, and the ability of the subgrid models to reproduce observational results. Methods. Using cosmological hydrodynamical simulations, we have analysed the gas-phase chemical contents of galaxies with stellar masses in the range 109−1011 M⊙. We estimated the fractions of metals stored in the different CGM phases, and the predicted O vi and Si iii column densities within the virial radius. Results. We find roughly 107 M⊙ of oxygen in the CGM of simulated galaxies having M⋆ ~ 1010 M⊙, in fair agreement with the lower limits imposed by observations. The Moxy is found to correlate with M⋆, at odds with current observational trends but in agreement with other numerical results. The estimated profiles of O vi column density reveal a substantial shortage of that ion, whereas Si iii, which probes the cool phase, is overpredicted. Nevertheless, the radial dependences of both ions follow the respective observed profiles. The analysis of the relative contributions of both ions from the hot, warm and cool phases suggests that the warm gas (105 K < T < 106 K) should be more abundant in order to bridge the mismatch with the observations, or alternatively, that more metals should be stored in this gas-phase. These discrepancies provide important information to improve the subgrid physics models. Our findings show clearly the importance of tracking more than one chemical element and the difficulty of simultaneously satisfying the observables that trace the circumgalactic gas at different physical conditions. Additionally, we find that the X-ray coronae around the simulated galaxies have luminosities and temperatures in decent agreement with the available observational estimates.


1992 ◽  
Vol 45 (4) ◽  
pp. 451
Author(s):  
RPA Bettens

A rich chemistry exists within dark clouds. In the most chemically studied dark cloud, Taurus molecular cloud one (TMC-l), more than 40 molecules have been detected. In this paper I look at the current isochoric, i.e. constant density, isothermal time-dependent gas-phase chemical models of dark clouds such as TMC-l and very briefly outline the present understanding of the chemistry of these objects. The above chemical models agree very well with the observed abundances of almost all chemical species at times earlier than steady state, i.e. earlier than thirty million years. However, the models are fraught with uncertainty and are not physically realistic representations of the full dynamical evolution of dark clouds from a more diffuse state. Nevertheless the agreement with observation is striking.


Sign in / Sign up

Export Citation Format

Share Document