scholarly journals Wind–MRI interactions in local models of protoplanetary discs – I. Ohmic resistivity

2020 ◽  
Vol 498 (1) ◽  
pp. 750-770
Author(s):  
Philip K C Leung ◽  
Gordon I Ogilvie

ABSTRACT A magnetic disc wind is an important mechanism that may be responsible for driving accretion and structure formation in protoplanetary discs. Recent numerical simulations have shown that these winds can take either the traditional ‘hourglass’ symmetry about the mid-plane, or a ‘slanted’ symmetry dominated by a mid-plane toroidal field of a single sign. The formation of this slanted symmetry state has not previously been explained. We use radially local 1D vertical shearing box simulations to assess the importance of large-scale MRI channel modes in influencing the formation and morphologies of these wind solutions. We consider only Ohmic resistivity and explore the effect of different magnetizations, with the mid-plane β parameter ranging from 105 to 102. We find that our magnetic winds go through three stages of development: cyclic, transitive, and steady, with the steady wind taking a slanted symmetry profile similar to those observed in local and global simulations. We show that the cycles are driven by periodic excitation of the n = 2 or 3 MRI channel mode coupled with advective eviction, and that the transition to the steady wind is caused by a much more slowly growing n = 1 mode altering the wind structure. Saturation is achieved through a combination of advective damping from the strong wind, and suppression of the instability due to a strong toroidal field. A higher disc magnetization leads to a greater tendency towards, and more rapid settling into the slanted symmetry steady wind, which may have important implications for mass and flux transport processes in protoplanetary discs.

2019 ◽  
Vol 623 ◽  
pp. A54 ◽  
Author(s):  
Rohit Kumar ◽  
Laurène Jouve ◽  
Dibyendu Nandy

Context. Magnetohydrodynamic interactions between plasma flows and magnetic fields is fundamental to the origin and sustenance of the 11-year sunspot cycle. These processes are intrinsically three-dimensional (3D) in nature. Aims. Our goal is to construct a 3D solar dynamo model that on the one hand captures the buoyant emergence of tilted bipolar sunspot pairs, and on the other hand produces cyclic large-scale field reversals mediated via surface flux-transport processes – that is, the Babcock-Leighton mechanism. Furthermore, we seek to explore the relative roles of flux transport by buoyancy, advection by meridional circulation, and turbulent diffusion in this 3D dynamo model. Methods. We perform kinematic dynamo simulations where the prescribed velocity field is a combination of solar-like differential rotation and meridional circulation, along with a parametrized turbulent diffusivity. We use a novel methodology for modeling magnetic buoyancy through field-strength-dependent 3D helical up-flows that results in the formation of tilted bipolar sunspots. Results. The bipolar spots produced in our simulations participate in the process of poloidal-field generation through the Babcock-Leighton mechanism, resulting in self-sustained and periodic large-scale magnetic field reversal. Our parameter space study varying the amplitude of the meridional flow, the convection zone diffusivity, and parameters governing the efficiency of the magnetic buoyancy mechanism reveal their relative roles in determining properties of the sunspot cycle such as amplitude, period, and dynamical memory relevant to solar cycle prediction. We also derive a new dynamo number for the Babcock-Leighton solar dynamo mechanism which reasonably captures our model dynamics. Conclusions. This study elucidates the relative roles of different flux-transport processes in the Sun’s convection zone in determining the properties and physics of the sunspot cycle and could potentially lead to realistic, data-driven 3D dynamo models for solar-activity predictions and exploration of stellar magnetism and starspot formation in other stars.


2008 ◽  
Vol 8 (10) ◽  
pp. 2811-2832 ◽  
Author(s):  
K. Zhang ◽  
H. Wan ◽  
M. Zhang ◽  
B. Wang

Abstract. The radioactive species radon (222Rn) has long been used as a test tracer for the numerical simulation of large scale transport processes. In this study, radon transport experiments are carried out using an atmospheric GCM with a finite-difference dynamical core, the van Leer type FFSL advection algorithm, and two state-of-the-art cumulus convection parameterization schemes. Measurements of surface concentration and vertical distribution of radon collected from the literature are used as references in model evaluation. The simulated radon concentrations using both convection schemes turn out to be consistent with earlier studies with many other models. Comparison with measurements indicates that at the locations where significant seasonal variations are observed in reality, the model can reproduce both the monthly mean surface radon concentration and the annual cycle quite well. At those sites where the seasonal variation is not large, the model is able to give a correct magnitude of the annual mean. In East Asia, where radon simulations are rarely reported in the literature, detailed analysis shows that our results compare reasonably well with the observations. The most evident changes caused by the use of a different convection scheme are found in the vertical distribution of the tracer. The scheme associated with weaker upward transport gives higher radon concentration up to about 6 km above the surface, and lower values in higher altitudes. In the lower part of the atmosphere results from this scheme does not agree as well with the measurements as the other scheme. Differences from 6 km to the model top are even larger, although we are not yet able to tell which simulation is better due to the lack of observations at such high altitudes.


2011 ◽  
Vol 64 (1) ◽  
pp. 263-270 ◽  
Author(s):  
K. Klepiszewski ◽  
M. Teufel ◽  
S. Seiffert ◽  
E. Henry

Generally, studies investigating the treatment efficiency of tank structures for storm water or waste water treatment observe pollutant flows in connection with conditions of hydraulic loading. Further investigations evaluate internal processes in tank structures using computational fluid dynamic (CFD) modelling or lab scale tests. As flow paths inside of tank structures have a considerable influence on the treatment efficiency, flow velocity profile (FVP) measurements can provide a possibility to calibrate CFD models and contribute to a better understanding of pollutant transport processes in these structures. This study focuses on tests carried out with the prototype FVP measurement device OCM Pro LR by NIVUS in a sedimentation tank with combined sewer overflow (CSO) situated in Petange, Luxembourg. The OCM Pro LR measurement system analyses the echo of ultrasonic signals of different flow depths to get a detailed FVP. A comparison of flow velocity measured by OCM Pro LR with a vane measurement showed good conformity. The FVPs measured by OCM Pro LR point out shortcut flows within the tank structure during CSO events, which could cause a reduction of the cleaning efficiency of the structure. The results prove the applicability of FVP measurements in large-scale structures.


2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


2016 ◽  
Vol 12 (S328) ◽  
pp. 237-239
Author(s):  
A. A. Vidotto

AbstractSynoptic maps of the vector magnetic field have routinely been made available from stellar observations and recently have started to be obtained for the solar photospheric field. Although solar magnetic maps show a multitude of details, stellar maps are limited to imaging large-scale fields only. In spite of their lower resolution, magnetic field imaging of solar-type stars allow us to put the Sun in a much more general context. However, direct comparison between stellar and solar magnetic maps are hampered by their dramatic differences in resolution. Here, I present the results of a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. This approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well, and is entirely consistent with the description adopted in several stellar studies. This method can also be used to confront synoptic maps synthesised in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.


2016 ◽  
Author(s):  
Klemens Hocke ◽  
Franziska Schranz ◽  
Eliane Maillard Barras ◽  
Lorena Moreira ◽  
Niklaus Kämpfer

Abstract. Observation and simulation of individual ozone streamers are important for the description and understanding of nonlinear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above Central Europe on December 4, 2015. The GROunbased Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude from December 1 to December 4. A similar ozone increase is simulated by the Specified Dynamics-Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and the timing of an ozone streamer (large-scale tongue like structure) extending from the subtropics in Northern America over the Atlantic to Central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m/s inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge region of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the Northern mid-latitude winter stratosphere.


Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
pp. 58-75
Author(s):  
Michel Boufadel ◽  
◽  
Annalisa Bracco ◽  
Eric Chassignet ◽  
Shuyi Chen ◽  
...  

Physical transport processes such as the circulation and mixing of waters largely determine the spatial distribution of materials in the ocean. They also establish the physical environment within which biogeochemical and other processes transform materials, including naturally occurring nutrients and human-made contaminants that may sustain or harm the region’s living resources. Thus, understanding and modeling the transport and distribution of materials provides a crucial substrate for determining the effects of biological, geological, and chemical processes. The wide range of scales in which these physical processes operate includes microscale droplets and bubbles; small-scale turbulence in buoyant plumes and the near-surface “mixed” layer; submesoscale fronts, convergent and divergent flows, and small eddies; larger mesoscale quasi-geostrophic eddies; and the overall large-scale circulation of the Gulf of Mexico and its interaction with the Atlantic Ocean and the Caribbean Sea; along with air-sea interaction on longer timescales. The circulation and mixing processes that operate near the Gulf of Mexico coasts, where most human activities occur, are strongly affected by wind- and river-induced currents and are further modified by the area’s complex topography. Gulf of Mexico physical processes are also characterized by strong linkages between coastal/shelf and deeper offshore waters that determine connectivity to the basin’s interior. This physical connectivity influences the transport of materials among different coastal areas within the Gulf of Mexico and can extend to adjacent basins. Major advances enabled by the Gulf of Mexico Research Initiative in the observation, understanding, and modeling of all of these aspects of the Gulf’s physical environment are summarized in this article, and key priorities for future work are also identified.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1850
Author(s):  
Jinjun Guo ◽  
Ting Guo ◽  
Shiwei Zhang ◽  
Yan Lu

The freezing and thawing of construction concrete is becoming an increasingly important structural challenge. In this study, a shrinkage-compensating concrete based on a double expansive admixture was developed and its frost resistance was assessed through rapid freezing and thawing cycling. The frost resistance of the concrete was derived through the measurement and calculation of the relative dynamic modulus of elasticity (RDME) and the mass loss rate (MLR), and the freezing- and thawing-cycle microstructures and products of concretes with different expansive agents were analyzed using scanning electron microscopy (SEM). It was shown that changes in the properties of the concrete under freezing and thawing could be divided into three stages: slow-damage stage, fast-damage stage, and stable stage. Compared to concrete without an expansive agent, a single-expansive-agent concrete demonstrated excellent frost resistance during the slow-damage stage, but the frost resistance rapidly decreased during the fast-damage age. After 150 cycles (the stable-damage stage), the concrete with a U-type expansive agent (UEA): MgO expansive agent (MEA) mix proportion of 2:1 had the best frost resistance, with RDME and MLR values 17.35% higher and 25.1% lower respectively, than that of an expansive-agent-free concrete. These test results provide a basis for the study of frost resistance in large-scale hydraulic concrete structures.


Sign in / Sign up

Export Citation Format

Share Document