scholarly journals Tidally trapped pulsations in binary stars

2020 ◽  
Vol 498 (4) ◽  
pp. 5730-5744
Author(s):  
J Fuller ◽  
D W Kurtz ◽  
G Handler ◽  
S Rappaport

ABSTRACT A new class of pulsating binary stars was recently discovered, whose pulsation amplitudes are strongly modulated with orbital phase. Stars in close binaries are tidally distorted, so we examine how a star’s tidally induced asphericity affects its oscillation mode frequencies and eigenfunctions. We explain the pulsation amplitude modulation via tidal mode coupling such that the pulsations are effectively confined to certain regions of the star, e.g. the tidal pole or the tidal equator. In addition to a rigorous mathematical formalism to compute this coupling, we provide a more intuitive semi-analytic description of the process. We discuss three resulting effects: (1) Tidal alignment, i.e. the alignment of oscillation modes about the tidal axis rather than the rotation axis; (2) Tidal trapping, e.g. the confinement of oscillations near the tidal poles or the tidal equator; (3) Tidal amplification, i.e. increased flux perturbations near the tidal poles where acoustic modes can propagate closer to the surface of the star. Together, these phenomena can account for the pulsation amplitude and phase modulation of the recently discovered class of ‘tidally tilted pulsators.’ We compare our theory to the three tidally tilted pulsators HD 74423, CO Cam, and TIC 63328020, finding that tidally trapped modes that are axisymmetric about the tidal axis can largely explain the first two, while a non-axisymmetric tidally aligned mode is present in the latter. Finally, we discuss implications and limitations of the theory, and we make predictions for the many new tidally tilted pulsators likely to be discovered in the near future.

2017 ◽  
Vol 14 (S339) ◽  
pp. 330-330
Author(s):  
B. Miszalski ◽  
R. Manick ◽  
J. Mikołajewska ◽  
K. Iłkiewicz ◽  
D. Kamath ◽  
...  

AbstractIn the last decade great strides have been made in understanding the role of binary stars in the evolution and shaping of planetary nebulæ (PNe). Observational efforts have mainly focused on finding close binaries with orbital periods of 1 day or less. Those close binary systems make up around 1 in 5 PNe, and constitute the youngest accessible window into the aftermath of the critical and unobserved common-envelope (CE) phase of binary-star evolution. The poster focused on our recent work with the High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT) to search for long-period binaries in PNe. Considerably less is known about such long-period binaries with orbital periods of weeks to years, but they may be fundamental to improving CE population synthesis models and for determining the total binary fraction of PNe. The queue-mode operation of SALT and the excellent sensitivity and stability of HRS (which is enclosed in a vacuum tank) are ideally suited to detecting binaries with low radial-velocity amplitudes over the expected timescales of weeks to years. Many exciting new discoveries about binaries have already been made in this newly-accessible southern horizon in time-domain astronomy thanks to the many unique advantages of SALT.


1979 ◽  
Vol 46 ◽  
pp. 371-384 ◽  
Author(s):  
J.B. Hearnshaw

RSCVn stars are fully detached binary stars which show intrinsic small amplitude (up to 0.3 amplitude peak-to-peak) light variations, as well as, in most of the known cases, eclipses. The spectra are F to G, IV to V for the hotter component and usually KOIV for the cooler. They are also characterised by abnormally strong H and K emission from the cooler star, or, occasionally, from both components. The orbital and light curve periods are in the range 1 day to 2 weeks. An interesting feature is the migration of the light variations to earlier orbital phase, as the light variation period is shorter than the orbital period by a few parts in 10+4to a few parts in 10+3.


2020 ◽  
Vol 501 (1) ◽  
pp. 483-490
Author(s):  
Jim Fuller

ABSTRACT In close binary stars, the tidal excitation of pulsations typically dissipates energy, causing the system to evolve towards a circular orbit with aligned and synchronized stellar spins. However, for stars with self-excited pulsations, we demonstrate that tidal interaction with unstable pulsation modes can transfer energy in the opposite direction, forcing the spins of the stars away from synchronicity, and potentially pumping the eccentricity and spin–orbit misalignment angle. This ‘inverse’ tidal process only occurs when the tidally forced mode amplitude is comparable to the mode’s saturation amplitude, and it is thus most likely to occur in main-sequence gravity mode pulsators with orbital periods of a few days. We examine the long-term evolution of inverse tidal action, finding the stellar rotation rate can potentially be driven to a very large or very small value, while maintaining a large spin–orbit misalignment angle. Several recent asteroseismic analyses of pulsating stars in close binaries have revealed extremely slow core rotation periods, which we attribute to the action of inverse tides.


2015 ◽  
Vol 2 (1) ◽  
pp. 183-187 ◽  
Author(s):  
L. Y. Zhu ◽  
S. B. Qian ◽  
E.-G. Zhao ◽  
E. Fernández Lajús ◽  
Z.-T. Han

The sdB-type close binaries are believed to have experienced a common-envelope phase and may evolve into cataclysmic binaries (CVs). About 10% of all known sdB binaries are eclipsing binaries consisting of very hot subdwarf primaries and low-mass companions with short orbital periods. The eclipse profiles of these systems are very narrow and deep, which benefits the determination of high precise eclipsing times and makes the detection of small and close-in tertiary bodies possible. Since 2006 we have monitored some sdB-type eclipsing binaries to search for the close-in substellar companions by analyzing the light travel time effect. Here some progresses of the program are reviewed and the formation of sdB-type binary is discussed.


1985 ◽  
Vol 111 ◽  
pp. 97-119
Author(s):  
Harold A. McAlister

With the advent of speckle interferometry, high angular resolution has begun to play a routine role in the study of binary stars. Speckle and other interferometric techniques not only bring enhanced resolution to this classic and fundamental field but provide an equally important gain in observational accuracy. These methods also offer the potential for performing accurate differential photometry for binary stars of very small angular separation. This paper reviews the achievements of modern interferometric techniques in measuring stellar masses and luminosities and discusses the special calibration problems encountered in binary star interferometry. The future possibilities for very high angular resolution studies of close binaries are also described.


1995 ◽  
Vol 155 ◽  
pp. 42-43
Author(s):  
Hiromoto Shibahashi ◽  
Masao Takata

AbstractBy assuming that the RR Lyrae stars have fairly strong dipole magnetic fields with the symmetry axis oblique to the rotation axis of the star, we show that the oscillation mode which would be a pure radial oscillation in absence of the magnetic field has a quadrupole component, which is axisymmetric with respect to the magnetic axis. The aspect angle of the quadrupole component changes due to the stellar rotation, and this apparent variation is interpreted as the Blazhko effect in RR Lyrae stars.


2019 ◽  
Vol 82 ◽  
pp. 137-151
Author(s):  
A. Maeder ◽  
G. Meynet

We first review the main effects of stellar rotation on evolution along the fundamental discoveries by Jean-Paul. Then, we examine some of the consequences of rotation in the evolution of single and binary stars. The proper account of meridional circulation in close binaries tends to increase the synchronization time because meridional currents always counteract the tidal interaction. We consider the case of the very low metallicity Z stars, in particular the CEMP-no stars, where rotational mixing may have played a dominant role in their strange chemical composition. Then, turning to “What are the mysteries?”, we emphasize that all over the evolution and for various masses the present models seem to still have a lack of rotational coupling between cores and envelopes. We suggest that magnetic fields may produce this missing internal coupling.


1988 ◽  
Vol 20 (01) ◽  
pp. 569-594
Author(s):  
J. Smak ◽  
R.H. Koch ◽  
K.D. Abhyankar ◽  
J. Andersen ◽  
A.H. Batten ◽  
...  

During the XlXth General Assembly of the IAU in Delhi the number of members of Cotrmission 42 increased to 260. This simply reflects the growing interest and importance of our field. Growing is not only the number of astronomers involved in research on CBS but also the number of papers resulting from that activity. As an example one can quote the numbers of papers listed during the last few years in Sections 117 (Close Binaries), 119 (Eelipsing Binaries), and 120 (Spectroscopic Binaries) of theAstronomy and Astrophysics Abstracts:705(1982), 775(1983), 836(1984), 1080(1985), and 911(1986); note that many additional references could be added to these numbers from other sections. Naturally, such numbers alone do not reflect the quality and even less so the position and significance of the CBS field. Here one could perhaps mention an impressive record of successful research proposals involving requests for the observing time on large, ground based telescopes and on space instruments. Indeed, in spite of a very strong competition from other fields, programs involving CBS are usually placed very high on the priority lists (cf. Sections 2D and 2E). Obviously, the close binary systems, their evolution, and the physical processes which occur in them (accretion, stellar winds, nuclear burning, etc) appear interesting and important not only to those who are involved in their studies but also to astronomers from other fields.


1979 ◽  
Vol 83 ◽  
pp. 383-399
Author(s):  
Janusz Ziółkowski

Three situations involving mass loss from binary systems are discussed. (1) Non-conservative mass exchange in semi-detached binaries. No quantitative estimate of this mechanism is possible at present. (2) Common envelope binaries. There are both theoretical and observational indications that this phase of evolution happens to many systems, even to some that are not very close initially (orbital periods ~ years). (3) Stellar winds in binaries. Observational evidence suggests that stellar winds from components of close binaries (especially semi-detached) are significantly stronger than from single stars at the same location in the H-R diagram. Theoretical arguments indicate that in some cases stellar wind may stabilize the component of a binary against the Roche lobe overflow. In some cases there is weak evidence of an anisotropy in the stellar wind.


1989 ◽  
Vol 113 ◽  
pp. 185-194
Author(s):  
J. S. Gallagher

AbstractThe evolution of massive close binary stars inevitably involves mass exchange between the two stellar components as well as mass loss from the system. A combination of these two processes could produce the stellar wind-modulated behavior seen in LB Vs. The possibility that LBVs are powered by accretion is examined, and does not appear to be a satisfactory general model. Instead, identification of LBVs with close binaries in high mass-loss rate or common envelope evolutionary phases shows promise.


Sign in / Sign up

Export Citation Format

Share Document