scholarly journals First measurement of the total gravitational quadrupole moment of a black widow companion

2020 ◽  
Vol 494 (3) ◽  
pp. 4448-4453
Author(s):  
Guillaume Voisin ◽  
C J Clark ◽  
R P Breton ◽  
V S Dhillon ◽  
M R Kennedy ◽  
...  

ABSTRACT We present the first measurement of the gravitational quadrupole moment of the companion star of a spider pulsar, namely the black widow PSR J2051–0827. To this end, we have re-analysed radio timing data using a new model that is able to account for periastron precession caused by tidal and centrifugal deformations of the star as well as by general relativity. The model allows for a time-varying component of the quadrupole moment, thus self-consistently accounting for the ill-understood orbital period variations observed in these systems. Our analysis results in the first detection of orbital precession in a spider system at $\dot{\omega } = -68{_{.}^{\circ}}6_{-0{_{.}^{\circ}}5}^{+0{_{.}^{\circ}}9}$ yr−1 and the most accurate determination of orbital eccentricity for PSR J2051–0827 with e = (4.2 ± 0.1) × 10−5. We show that the variable quadrupole component is about 100 times smaller than the average quadrupole moment $\bar{Q} = -2.2_{-1}^{+0.6} \times 10^{41} \ {\rm kg\,m^2}$. We discuss how accurate modelling of high-precision optical light curves of the companion star will allow its apsidal motion constant to be derived from our results.

2008 ◽  
Vol 4 (S253) ◽  
pp. 466-469
Author(s):  
Philip Nutzman ◽  
David Charbonneau ◽  
Joshua N. Winn ◽  
Heather A. Knutson ◽  
Jonathan J. Fortney ◽  
...  

AbstractWe present Spitzer 8 μm transit observations of the extrasolar planet system HD 149026b. At this wavelength, transit light curves are weakly affected by stellar limb-darkening, allowing for a simpler and more accurate determination of planetary parameters. We measure a planet-star radius ratio of Rp/R∗=0.05158±0.00077, and in combination with ground-based data and independent constraints on the stellar mass and radius, we derive an orbital inclination of i = 85°.4+0°.9−0°.8 and a planet radius of 0.755 ± 0.040 RJ. These measurements further support models in which the planet is greatly enriched in heavy elements.


1988 ◽  
Vol 143 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Geerd H.F. Diercksen ◽  
Andrzej J. Sadlej ◽  
Dage Sundholm ◽  
Pekka Pyykkö

2011 ◽  
Vol 7 (S282) ◽  
pp. 21-26
Author(s):  
Panagiotis G. Niarchos

AbstractMulti-wavelength observational data, obtained from ground-based and space observations are used to compute the physical parameters of the observed Interacting Binaries (IBs) and study the interactions and physical processes in these systems. In addition, the database of IBs from ground-based surveys and space missions will provide light curves for many thousands of new binary systems for which extensive follow up ground-based observations can be carried out. In certain cases, light curves of superior quality will allow studies of fine effects of stellar activity and very accurate determination of stellar parameters. Moreover, many new discoveries of interesting systems are expected from ground-based all-sky surveys and space missions, including low mass binaries and star-planet binary systems. The most important current and future programs of observations of IBs from ground and space are presented.


1992 ◽  
Vol 9 ◽  
pp. 471-474
Author(s):  
N. Panagia

AbstractWe present and discuss the first images of SN 1987A obtained on day 1278 with the FOC on board the Hubble Space Telescope. The supernova is well detected and resolved spatially in the four observed bands. The UV luminosity of SN 1987A is found to be comparable to that emitted in the visible and infrared spectrum. Narrow-band [OUI] imaging reveals that the circumstellar nebula surrounding SN 1987A has the shape of a perfectly elliptical ring, implying an inclination of 43° ±3°. A comparison of the ring angular size with its absolute size derived from an analysis of the light curves of narrow UV lines measured with IUE, gives an accurate determination of the distance to SN 1987A, i.e. d(1987A) = 51.2±3.1 kpc. Allowing for the relative position of SN 1987A within the LMC, the distance to the center of the LMC turns out to be 50.1 ± 3.1 kpc. This value agrees very well with the determinations obtained from light curve analyses of variable stars.


2016 ◽  
Vol 12 (S329) ◽  
pp. 186-190
Author(s):  
A. Damineli ◽  
M. Teodoro ◽  
N. D. Richardson ◽  
T. R. Gull ◽  
M. F. Corcoran ◽  
...  

AbstractEta Carinae is one of the most massive observable binaries. Yet determination of its orbital and physical parameters is hampered by obscuring winds. However the effects of the strong, colliding winds changes with phase due to the high orbital eccentricity. We wanted to improve measures of the orbital parameters and to determine the mechanisms that produce the relatively brief, phase-locked minimum as detected throughout the electromagnetic spectrum. We conducted intense monitoring of the He ii λ4686 line in η Carinae for 10 months in the year 2014, gathering ~300 high S/N spectra with ground- and space-based telescopes. We also used published spectra at the FOS4 SE polar region of the Homunculus, which views the minimum from a different direction. We used a model in which the He ii λ4686 emission is produced by two mechanisms: a) one linked to the intensity of the wind-wind collision which occurs along the whole orbit and is proportional to the inverse square of the separation between the companion stars; and b) the other produced by the ‘bore hole’ effect which occurs at phases across the periastron passage. The opacity (computed from 3D SPH simulations) as convolved with the emission reproduces the behavior of equivalent widths both for direct and reflected light. Our main results are: a) a demonstration that the He ii λ4686 light curve is exquisitely repeatable from cycle to cycle, contrary to previous claims for large changes; b) an accurate determination of the longitude of periastron, indicating that the secondary star is ‘behind’ the primary at periastron, a dispute extended over the past decade; c) a determination of the time of periastron passage, at ~4 days after the onset of the deep light curve minimum; and d) show that the minimum is simultaneous for observers at different lines of sight, indicating that it is not caused by an eclipse of the secondary star, but rather by the immersion of the wind-wind collision interior to the inner wind of the primary.


1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
M.A. Gribelyuk ◽  
M. Rühle

A new method is suggested for the accurate determination of the incident beam direction K, crystal thickness t and the coordinates of the basic reciprocal lattice vectors V1 and V2 (Fig. 1) of the ZOLZ plans in pixels of the digitized 2-D CBED pattern. For a given structure model and some estimated values Vest and Kest of some point O in the CBED pattern a set of line scans AkBk is chosen so that all the scans are located within CBED disks.The points on line scans AkBk are conjugate to those on A0B0 since they are shifted by the reciprocal vector gk with respect to each other. As many conjugate scans are considered as CBED disks fall into the energy filtered region of the experimental pattern. Electron intensities of the transmitted beam I0 and diffracted beams Igk for all points on conjugate scans are found as a function of crystal thickness t on the basis of the full dynamical calculation.


Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


Sign in / Sign up

Export Citation Format

Share Document