scholarly journals Completeness of the Gaia-verse – IV. The astrometry spread function of Gaia DR2

2021 ◽  
Vol 502 (2) ◽  
pp. 1908-1924
Author(s):  
Andrew Everall ◽  
Douglas Boubert ◽  
Sergey E Koposov ◽  
Leigh Smith ◽  
Berry Holl

ABSTRACT Gaia Data Release 2 (DR2) published positions, parallaxes, and proper motions for an unprecedented 1331 909 727 sources, revolutionizing the field of Galactic dynamics. We complement this data with the astrometry spread function (ASF), the expected uncertainty in the measured positions, proper motions, and parallax for a non-accelerating point source. The ASF is a Gaussian function for which we construct the 5D astrometric covariance matrix as a function of position on the sky and apparent magnitude using the Gaia DR2 scanning law and demonstrate excellent agreement with the observed data. This can be used to answer the question ‘What astrometric covariance would Gaia have published if my star was a non-accelerating point source?’. The ASF will enable characterization of binary systems, exoplanet orbits, astrometric microlensing events, and extended sources that add an excess astrometric noise to the expected astrometry uncertainty. By using the ASF to estimate the unit weight error of Gaia DR2 sources, we demonstrate that the ASF indeed provides a direct probe of the excess source noise. We use the ASF to estimate the contribution to the selection function of the Gaia astrometric sample from a cut on astrometric_sigma5d_max showing high completeness for G < 20 dropping to ${\lt} 1{{\ \rm per\ cent}}$ in underscanned regions of the sky for G = 21. We have added an ASF module to the python package scanninglaw (https://github.com/gaiaverse/scanninglaw) through which users can access the ASF.

Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 52
Author(s):  
Iker González-Santamaría ◽  
Minia Manteiga ◽  
Carlos Dafonte ◽  
Arturo Manchado ◽  
Ana Ulla

The aim of this work is to search for binary stars associated to planetary nebulae (ionized stellar envelopes in expansion), by mining the astronomical archive of Gaia DR2, that is composed by around 1.7 billion stellar sources. For this task, we selected those objects with coincident astrometric parameters (parallaxes and proper motions) with the corresponding central star, among a sample of 211 planetary nebulae. By this method, we found eight binary systems, and we obtained their components positions, separations, temperatures and luminosities, as well as some of their masses and ages. In addition, we estimated the probability for each companion star of having been detected by chance and we analyzed how the number of false matches increase as the separation distance between both stars gets larger. All these procedures have been carried out making use of data mining techniques.


2020 ◽  
Vol 641 ◽  
pp. A150 ◽  
Author(s):  
Ioannis Argyriou ◽  
Martyn Wells ◽  
Alistair Glasse ◽  
David Lee ◽  
Pierre Royer ◽  
...  

Context. As is common for infrared spectrometers, the constructive and destructive interference in different layers of the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) detector arrays modulate the detected signal as a function of wavelength. The resulting “fringing” in the Medium-Resolution Spectrometer (MRS) spectra varies in amplitude between 10% and 30% of the spectral baseline. A common method for correcting for fringes relies on dividing the data by a fringe flat. In the case of MIRI MRS, the fringe flat is derived from measurements of an extended, spatially homogeneous source acquired during the thermal-vacuum ground verification of the instrument. While this approach reduces fringe amplitudes of extended sources below the percent level, at the detector level, point source fringe residuals vary in a systematic way across the point spread function. The effect could hamper the scientific interpretation of MRS observations of unresolved sources, semi-extended sources, and point sources in crowded fields. Aims. We find MIRI MRS point source fringes to be reproducible under similar observing conditions. We want to investigate whether a generic and accurate correction can be determined. Therefore, we want to identify the variables, if they exist, that would allow for a parametrization of the signal variations induced by point source fringe modulations. Methods. We determine the point source fringe properties by analyzing MRS detector plane images acquired on the ground. We extracted the fringe profile of multiple point source observations and studied the amplitude and phase of the fringes as a function of field position and pixel sampling of the point spread function of the optical chain. Results. A systematic variation in the amplitude and phase of the point source fringes is found over the wavelength range covered by the test sources (4.9 − 5.8 μm). The variation depends on the fraction of the point spread function seen by the detector pixel. We identify the non-uniform pixel illumination as the root cause of the reported systematic variation. This new finding allows us to reconcile the point source and extended source fringe patterns observed in test data during ground verification. We report an improvement after correction of 50% on the 1σ standard deviation of the spectral continuum. A 50% improvement is also reported in line sensitivity for a benchmark test with a spectral continuum of 100 mJy. The improvement in the shape of weak lines is illustrated using a T Tauri model spectrum. Consequently, we verify that fringes of extended sources and potentially semi-extended sources and crowded fields can be simulated by combining multiple point source fringe transmissions. Furthermore, we discuss the applicability of this novel fringe-correction method to the MRS data (and the data of other instruments).


2020 ◽  
Vol 500 (1) ◽  
pp. 397-409
Author(s):  
Jan Rybizki ◽  
Hans-Walter Rix ◽  
Markus Demleitner ◽  
Coryn A L Bailer-Jones ◽  
William J Cooper

ABSTRACT The Gaia Data Release 2 (DR2) radial velocity sample (GDR2RVS), which provides six-dimensional phase-space information on 7.2 million stars, is of great value for inferring properties of the Milky Way. Yet a quantitative and accurate modelling of this sample is hindered without knowledge and inclusion of a well-characterized selection function. Here we derive the selection function through estimates of the internal completeness, i.e. the ratio of GDR2RVS sources compared to all Gaia DR2 sources (GDR2all). We show that this selection function or ‘completeness’ depends on basic observables, in particular the apparent magnitude GRVS and colour G − GRP, but also on the surrounding source density and on sky position, where the completeness exhibits distinct small-scale structure. We identify a region of magnitude and colour that has high completeness, providing an approximate but simple way of implementing the selection function. For a more rigorous and detailed description we provide python code to query our selection function, as well as tools and adql queries that produce custom selection functions with additional quality cuts.


2018 ◽  
Vol 619 ◽  
pp. A78 ◽  
Author(s):  
D. J. Lennon ◽  
C. J. Evans ◽  
R. P. van der Marel ◽  
J. Anderson ◽  
I. Platais ◽  
...  

A previous spectroscopic study identified the very massive O2 III star VFTS 16 in the Tarantula Nebula as a runaway star based on its peculiar line-of-sight velocity. We use the Gaia DR2 catalog to measure the relative proper motion of VFTS 16 and nearby bright stars to test if this star might have been ejected from the central cluster, R136, via dynamical ejection. We find that the position angle and magnitude of the relative proper motion (0.338±0.046 mas yr−1, or approximately 80±11 km s−1) of VFTS 16 are consistent with ejection from R136 approximately 1.5±0.2 Myr ago, very soon after the cluster was formed. There is some tension with the presumed age of VFTS 16 that, from published stellar parameters, cannot be greater than 0.9+0.3−0.2 Myr. Older ages for this star would appear to be prohibited due to the absence of He I lines in its optical spectrum, since this sets a firm lower limit on its effective temperature. The dynamical constraints may imply an unusual evolutionary history for this object, perhaps indicating it is a merger product. Gaia DR2 also confirms that another very massive star in the Tarantula Nebula, VFTS 72 (alias BI 253; O2 III-V(n)((f*)), is also a runaway on the basis of its proper motion as measured by Gaia. While its tangential proper motion (0.392±0.062 mas yr−1 or 93±15 km s−1) would be consistent with dynamical ejection from R136 approximately 1 Myr ago, its position angle is discrepant with this direction at the 2σ level. From their Gaia DR2 proper motions we conclude that the two ∼100 M⊙ O2 stars, VFTS 16 and VFTS 72, are fast runaway stars, with space velocities of around 100 km s−1 relative to R136 and the local massive star population. The dynamics of VFTS 16 are consistent with it having been ejected from R136, and this star therefore sets a robust lower limit on the age of the central cluster of ∼1.3 Myr.


2018 ◽  
Vol 619 ◽  
pp. A103 ◽  
Author(s):  
T. K. Fritz ◽  
G. Battaglia ◽  
M. S. Pawlowski ◽  
N. Kallivayalil ◽  
R. van der Marel ◽  
...  

A proper understanding of the Milky Way (MW) dwarf galaxies in a cosmological context requires knowledge of their 3D velocities and orbits. However, proper motion (PM) measurements have generally been of limited accuracy and are available only for more massive dwarfs. We therefore present a new study of the kinematics of the MW dwarf galaxies. We use the Gaia DR2 for those dwarfs that have been spectroscopically observed in the literature. We derive systemic PMs for 39 galaxies and galaxy candidates out to 420 kpc, and generally find good consistency for the subset with measurements available from other studies. We derive the implied Galactocentric velocities, and calculate orbits in canonical MW halo potentials of low (0.8 × 1012 M⊙) and high mass (1.6 × 1012 M⊙). Comparison of the distributions of orbital apocenters and 3D velocities to the halo virial radius and escape velocity, respectively, suggests that the satellite kinematics are best explained in the high-mass halo. Tuc III, Crater II, and additional candidates have orbital pericenters small enough to imply significant tidal influences. Relevant to the missing satellite problem, the fact that fewer galaxies are observed to be near apocenter than near pericenter implies that there must be a population of distant dwarf galaxies yet to be discovered. Of the 39 dwarfs: 12 have orbital poles that do not align with the MW plane of satellites (given reasonable assumptions about its intrinsic thickness); 10 have insufficient PM accuracy to establish whether they align; and 17 satellites align, of which 11 are co-orbiting and (somewhat surprisingly, in view of prior knowledge) 6 are counter-orbiting. Group infall might have contributed to this, but no definitive association is found for the members of the Crater-Leo group.


1968 ◽  
Vol 1 ◽  
pp. 311-315
Author(s):  
C. A. Murray

In many problems of galactic kinematics we need to know the proper motions of faint stars, as well as bright stars, within some well-defined reference frame. Generally speaking, the accuracy required is greater for faint stars on account of their larger distances. Techniques at present used for determining proper motions vary according to apparent magnitude, and it is clearly desirable that all methods should give results which are capable of reduction to a common frame.


Author(s):  
Damian Borys ◽  
Katarzyna Szczucka-Borys ◽  
Kamil Gorczewski

System matrix computation for iterative reconstruction algorithms in SPECT based on direct measurements A method for system matrix calculation in the case of iterative reconstruction algorithms in SPECT was implemented and tested. Due to a complex mathematical description of the geometry of the detector set-up, we developed a method for system matrix computation that is based on direct measurements of the detector response. In this approach, the influence of the acquisition equipment on the image formation is measured directly. The objective was to obtain the best quality of reconstructed images with respect to specified measures. This is indispensable in order to be able to perform reliable quantitative analysis of SPECT images. It is also especially important in non-hybrid gamma cameras, where not all physical processes that disturb image acquisition can be easily corrected. Two experiments with an 131I point source placed at different distances from the detector plane were performed allowing the detector response to be acquired as a function of the point source distance. An analytical Gaussian function was fitted to the acquired data in both the one- and the two-dimensional case. A cylindrical phantom filled with a water solution of 131I containing a region of "cold" spheres as well as a uniform solution (without any spheres) was used to perform algorithm evaluation. The reconstructed images obtained by using four different of methods system matrix computation were compared with those achieved using reconstruction software implemented in the gamma camera. The contrast of the spheres and uniformity were compared for each reconstruction result and also with the ranges of those values formulated by the AAPM (American Association of Physicists in Medicine). The results show that the implementation of the OSEM (Ordered Subsets Expectation Maximization) algorithm with a one-dimensional fit to the Gaussian CDR (Collimator-Detector Response) function provides the best results in terms of adopted measures. However, the fit of the two-dimensional function also gives satisfactory results. Furthermore, the CDR function has the potential to be applied to a fully 3D OSEM implementation. The lack of the CDR in system matrix calculation results in a very noisy image that cannot be used for diagnostic purposes.


2017 ◽  
Vol 12 (S330) ◽  
pp. 382-385
Author(s):  
Josselin Desmars ◽  
Julio Camargo ◽  
Bruno Sicardy ◽  
Felipe Braga-Ribas ◽  
Roberto Vieira-Martins ◽  
...  

AbstractStellar occultations are a unique technique to access physical characteristics of distant solar system objects from the ground. They allow the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings) of Transneptunian objects and Centaurs. This technique is made successful thanks to accurate predictions of occultations. Accuracy of the predictions depends on the uncertainty in the position of the occulted star and the object's orbit. The Gaia stellar catalogue (Gaia Collaboration (2017)) now allows to get accurate astrometric stellar positions (to the mas level). The main uncertainty remains on the orbit. In this context, we now take advantage of the NIMA method (Desmars et al.(2015)) for the orbit determination and of the Gaia DR1 catalogue for the astrometry. In this document, we show how the orbit determination is improved by reducing current and some past observations with Gaia DR1. Moreover, we also use more than 45 past positive occultations observed in the 2009-2017 period to derive very accurate astrometric positions only depending on the position of the occulted stars (about few mas with Gaia DR1). We use the case of (10199) Chariklo as an illustration. The main limitation lies in the imprecision of the proper motions which is going to be solved by the Gaia DR2 release.


2021 ◽  
pp. 89-98
Author(s):  
O. V. KIYAEVA ◽  
R. YA. ZHUCHKOV ◽  
I.S. IZMAILOV

There are high-precision positions, proper motions, parallaxes and radial velocities at the instant 2015.5 for all three components of the star ADS 48 ABF in the catalogue Gaia DR2 (2018). According to these data relative motions and the family of orbits were calculated by the Apparent Motion Parameters (AMP) method (Kiselev and Kiyaeva, 1980), and the best orbit was chosen for the inner pair AB. A perturbation with the period of 11 years was discovered according to Pulkovo observations of the outer pair. The reasons for the perturbation are discussed.


2019 ◽  
Vol 489 (2) ◽  
pp. 2505-2510 ◽  
Author(s):  
Moiya A S McTier ◽  
David M Kipping

Abstract We demonstrate that planet occurrence does not depend on stellar galactocentric velocity in the Solar neighbourhood. Using Gaia DR2 astrometry and radial velocity data, we calculate 3D galactocentric velocities for 197 090 Kepler field stars, 1647 of which are confirmed planet hosts. When we compare the galactocentric velocities of planet hosts to those of the entire field star sample, we observe a statistically significant (KS p-value  = 10−70) distinction, with planet hosts being apparently slower than field stars by ∼40 km s−1. We explore some potential explanations for this difference and conclude that it is not a consequence of the planet–metallicity relation or distinctions in the samples’ thin/thick disc membership, but rather an artefact of Kepler’s selection function. Non Kepler-host stars that have nearly identical distances, temperatures, surface gravities, and Kepler magnitudes to the confirmed planet hosts also have nearly identical velocity distributions. Using one of these identical non-host samples, we consider that the probability of a star with velocity vtot hosting a planet can be described by an exponential function proportional to $e^{(-v_{\mathrm{tot}}/v_0)}$. Using a Markov Chain Monte Carlo sampler, we determine that v0 >976 km s−1 to 99 per cent confidence, which implies that planets in the Solar neighbourhood are just as likely to form around high-velocity stars as they are around low-velocity stars. Our work highlights the subtle ways in which selection biases can create strong correlations without physical underpinnings.


Sign in / Sign up

Export Citation Format

Share Document