scholarly journals Evolution of subhalo orbits in a smoothly growing host halo potential

2021 ◽  
Vol 503 (1) ◽  
pp. 1233-1247
Author(s):  
Go Ogiya ◽  
James E Taylor ◽  
Michael J Hudson

ABSTRACT The orbital parameters of dark matter (DM) subhaloes play an essential role in determining their mass-loss rates and overall spatial distribution within a host halo. Haloes in cosmological simulations grow by a combination of relatively smooth accretion and more violent mergers, and both processes will modify subhalo orbits. To isolate the impact of the smooth growth of the host halo from other relevant mechanisms, we study subhalo orbital evolution using numerical calculations in which subhaloes are modelled as massless particles orbiting in a time-varying spherical potential. We find that the radial action of the subhalo orbit decreases over the first few orbits, indicating that the response to the growth of the host halo is not adiabatic during this phase. The subhalo orbits can shrink by a factor of ∼1.5 in this phase. Subsequently, the radial action is well conserved and orbital contraction slows down. We propose a model accurately describing the orbital evolution. Given these results, we consider the spatial distribution of the population of subhaloes identified in high-resolution cosmological simulations. We find that it is consistent with this population having been accreted at $z \lesssim 3$, indicating that any subhaloes accreted earlier are unresolved in the simulations. We also discuss tidal stripping as a formation scenario for NGC 1052-DF2, an ultra diffuse galaxy significantly lacking DM, and find that its expected DM mass could be consistent with observational constraints if its progenitor was accreted early enough, $z \gtrsim 1.5$, although it should still be a relatively rare object.

2019 ◽  
Vol 629 ◽  
pp. A103 ◽  
Author(s):  
M. I. Saladino ◽  
O. R. Pols

Carbon-enhanced metal-poor stars, CH stars, barium stars, and extrinsic S stars, among other classes of chemically peculiar stars, are thought to be the products of the interaction of low- and intermediate-mass binaries, which occurred when the most evolved star was in the asymptotic giant branch (AGB) phase. Binary evolution models predict that because of the large sizes of AGB stars, if the initial orbital periods of such systems are shorter than a few thousand days, their orbits should have circularised due to tidal effects. However, observations of the progeny of AGB binary stars show that many of these objects have substantial eccentricities, up to e ≈ 0.9. In this work we explore the impact of wind mass transfer on the orbital parameters of AGB binary stars by performing numerical simulations in which the AGB wind is modelled using a hydrodynamical code and the dynamics of the stars is evolved using an N-body code. We find that in most models the effect of wind mass transfer contributes to the circularisation of the orbit, but on longer timescales than tidal circularisation if e ≲ 0.4. For relatively low initial wind velocities and pseudo-synchronisation of the donor star, we find a structure resembling wind Roche-lobe overflow as the stars approach periastron. In this case, the interaction between the gas and the star is stronger than when the initial wind velocity is high and the orbit shrinks while the eccentricity decreases. In one of our models wind interaction is found to pump the eccentricity of the orbit on a similar timescale as tidal circularisation. However, since the orbit of this model is shrinking tidal effects will become stronger during the evolution of the system. Although our study is based on a small sample of models, it offers some insight into the orbital evolution of eccentric binary stars interacting via winds. A larger grid of numerical models for different binary parameters is needed to test if a regime exists where hydrodynamical eccentricity pumping can effectively counteract tidal circularisation, and if this can explain the puzzling eccentricities of the descendants of AGB binaries.


Author(s):  
Roger Moussa ◽  
Bruno Cheviron

Floods are the highest-impact natural disasters. In agricultural basins, anthropogenic features are significant factors in controlling flood and erosion. A hydrological-hydraulic-erosion diagnosis is necessary in order to choose the most relevant action zones and to make recommendations for alternative land uses and cultivation practices in order to control and reduce floods and erosion. This chapter first aims to provide an overview of the flow processes represented in the various possible choices of model structure and refinement. It then focuses on the impact of the spatial distribution and temporal variation of hydrological soil properties in farmed basins, representing their effects on the modelled water and sediment flows. Research challenges and leads are then tackled, trying to identify the conditions in which sufficient adequacy exists between site data and modelling strategies.


2021 ◽  
Vol 13 (9) ◽  
pp. 4898
Author(s):  
Andrzej Tucki ◽  
Korneliusz Pylak

Regional inequalities are a major concern for governments and policymakers. There is no doubt that tourism impacts the reduction of inequalities, but this impact is not entirely clear. We consider this ambiguity to be related to both the level of study and type of accommodation. In the present study, we examine the inequality level measured by the Gini coefficient in 108 municipalities of the peripheral region of northeastern Poland from 2009 to 2018. We employ a directional spillover index to measure the impact of two accommodation types on tax incomes per capita. The empirical results indicate that collective accommodation-based tourism only reduced inequality during the financial crisis, while individual accommodation-based tourism started to reduce inequality from 2014, when Russian sanctions hit local agriculture and businesses. These results indicate that the role of accommodation types is time-varying and evident in measuring economic distress during and after shocks.


2020 ◽  
Vol 16 (4) ◽  
pp. 271-289
Author(s):  
Nathan Sandholtz ◽  
Jacob Mortensen ◽  
Luke Bornn

AbstractEvery shot in basketball has an opportunity cost; one player’s shot eliminates all potential opportunities from their teammates for that play. For this reason, player-shot efficiency should ultimately be considered relative to the lineup. This aspect of efficiency—the optimal way to allocate shots within a lineup—is the focus of our paper. Allocative efficiency should be considered in a spatial context since the distribution of shot attempts within a lineup is highly dependent on court location. We propose a new metric for spatial allocative efficiency by comparing a player’s field goal percentage (FG%) to their field goal attempt (FGA) rate in context of both their four teammates on the court and the spatial distribution of their shots. Leveraging publicly available data provided by the National Basketball Association (NBA), we estimate player FG% at every location in the offensive half court using a Bayesian hierarchical model. Then, by ordering a lineup’s estimated FG%s and pairing these rankings with the lineup’s empirical FGA rate rankings, we detect areas where the lineup exhibits inefficient shot allocation. Lastly, we analyze the impact that sub-optimal shot allocation has on a team’s overall offensive potential, demonstrating that inefficient shot allocation correlates with reduced scoring.


Author(s):  
Sheree A Pagsuyoin ◽  
Joost R Santos

Water is a critical natural resource that sustains the productivity of many economic sectors, whether directly or indirectly. Climate change alongside rapid growth and development are a threat to water sustainability and regional productivity. In this paper, we develop an extension to the economic input-output model to assess the impact of water supply disruptions to regional economies. The model utilizes the inoperability variable, which measures the extent to which an infrastructure system or economic sector is unable to deliver its intended output. While the inoperability concept has been utilized in previous applications, this paper offers extensions that capture the time-varying nature of inoperability as the sectors recover from a disruptive event, such as drought. The model extension is capable of inserting inoperability adjustments within the drought timeline to capture time-varying likelihoods and severities, as well as the dependencies of various economic sectors on water. The model was applied to case studies of severe drought in two regions: (1) the state of Massachusetts (MA) and (2) the US National Capital Region (NCR). These regions were selected to contrast drought resilience between a mixed urban–rural region (MA) and a highly urban region (NCR). These regions also have comparable overall gross domestic products despite significant differences in the distribution and share of the economic sectors comprising each region. The results of the case studies indicate that in both regions, the utility and real estate sectors suffer the largest economic loss; nonetheless, results also identify region-specific sectors that incur significant losses. For the NCR, three sectors in the top 10 ranking of highest economic losses are government-related, whereas in the MA, four sectors in the top 10 are manufacturing sectors. Furthermore, the accommodation sector has also been included in the NCR case intuitively because of the high concentration of museums and famous landmarks. In contrast, the Wholesale Trade sector was among the sectors with the highest economic losses in the MA case study because of its large geographic size conducive for warehouses used as nodes for large-scale supply chain networks. Future modeling extensions could potentially include analysis of water demand and supply management strategies that can enhance regional resilience against droughts. Other regional case studies can also be pursued in future efforts to analyze various categories of drought severity beyond the case studies featured in this paper.


2021 ◽  
Vol 13 (14) ◽  
pp. 7603
Author(s):  
Xiangdong Liu ◽  
Guangxi Cao

The key to transforming China’s economy from high-speed growth to high-quality development is to improve total factor productivity (TFP). Based on the panel data of China’s listed companies participating in PPP (Public–Private Partnerships) projects from 2010 to 2019, this paper constructs the time-varying DID method to test the impact of participation in PPP projects on the company’s TFP empirically, explore the mechanism of the effect of participation in PPP projects on the company’s TFP, and then conduct heterogeneous analysis from four perspectives: region, industry, ownership form, and operation mode. The empirical results show that participation in PPP projects can significantly promote the growth of the company’s TFP, which mainly comes from the promotion of the innovation level of listed companies and the alleviation of financing constraints by participating in PPP projects. In addition, participation in PPP projects has a significant impact on TFP of listed companies in the eastern region, listed companies in the secondary and tertiary industries, state-owned listed companies, and listed companies participating in PPP projects under the BOT mode.


Author(s):  
Sara M.T. Polo

AbstractThis article examines the impact and repercussions of the COVID-19 pandemic on patterns of armed conflict around the world. It argues that there are two main ways in which the pandemic is likely to fuel, rather than mitigate, conflict and engender further violence in conflict-prone countries: (1) the exacerbating effect of COVID-19 on the underlying root causes of conflict and (2) the exploitation of the crisis by governments and non-state actors who have used the coronavirus to gain political advantage and territorial control. The article uses data collected in real-time by the Armed Conflict Location & Event Data Project (ACLED) and the Johns Hopkins University to illustrate the unfolding and spatial distribution of conflict events before and during the pandemic and combine this with three brief case studies of Afghanistan, Nigeria, and Libya. Descriptive evidence shows how levels of violence have remained unabated or even escalated during the first five months of the pandemic and how COVID-19-related social unrest has spread beyond conflict-affected countries.


2021 ◽  
pp. 135481662110088
Author(s):  
Sefa Awaworyi Churchill ◽  
John Inekwe ◽  
Kris Ivanovski

Using a historical data set and recent advances in non-parametric time series modelling, we investigate the nexus between tourism flows and house prices in Germany over nearly 150 years. We use time-varying non-parametric techniques given that historical data tend to exhibit abrupt changes and other forms of non-linearities. Our findings show evidence of a time-varying effect of tourism flows on house prices, although with mixed effects. The pre-World War II time-varying estimates of tourism show both positive and negative effects on house prices. While changes in tourism flows contribute to increasing housing prices over the post-1950 period, this is short-lived, and the effect declines until the mid-1990s. However, we find a positive and significant relationship after 2000, where the impact of tourism on house prices becomes more pronounced in recent years.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Anchi Wu ◽  
Guoyi Zhou

AbstractPhosphorus (P) is an important element in terrestrial ecosystems and plays a critical role in soil quality and ecosystem productivity. Soil total P distributions have undergone large spatial changes as a result of centuries of climate change. It is necessary to study the characteristics of the horizontal and vertical distributions of soil total P and its influencing factors. In particular, the influence of climatic factors on the spatial distribution of soil total P in China’s forest ecosystems remain relatively unknown. Here, we conducted an intensive field investigation in different forest ecosystems in China to assess the effect of climatic factors on soil total P concentration and distribution. The results showed that soil total P concentration significantly decreased with increasing soil depth. The spatial distribution of soil total P increased with increasing latitude and elevation gradient but decreased with increasing longitude gradient. Random forest models and linear regression analyses showed that the explanation rate of bioclimatic factors and their relationship with soil total P concentration gradually decreased with increasing soil depths. Variance partitioning analysis demonstrated that the most important factor affecting soil total P distribution was the combined effect of temperature and precipitation factor, and the single effect of temperature factors had a higher explanation rate compare with the single effect of precipitation factors. This work provides a new farmework for the geographic distribution pattern of soil total P and the impact of climate variability on P distribution in forest ecosystems.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4648
Author(s):  
Zhipeng Tang ◽  
Ziao Mei ◽  
Jialing Zou

The carbon intensity of China’s resource-based cities (RBCs) is much higher than the national average due to their relatively intensive mode of development. Low carbon transformation of RBCs is an important way to achieve the goal of reaching the carbon emissions peak in 2030. Based on the panel data from 116 RBCs in China from 2003 to 2018, this study takes the opening of high-speed railway (HSR) lines as a quasi-experiment, using a time-varying difference-in-difference (DID) model to empirically evaluate the impact of an HSR line on reducing the carbon intensity of RBCs. The results show that the opening of an HSR line can reduce the carbon intensity of RBCs, and this was still true after considering the possibility of problems with endogenous selection bias and after applying the relevant robustness tests. The opening of an HSR line is found to have a significant reducing effect on the carbon intensity of different types of RBC, and the decline in the carbon intensity of coal-based cities is found to be the greatest. Promoting migration of RBCs with HSR lines is found to be an effective intermediary way of reducing their carbon intensity.


Sign in / Sign up

Export Citation Format

Share Document