scholarly journals Can intrinsic alignments of elongated low-mass galaxies be used to map the cosmic web at high redshift?

2019 ◽  
Vol 488 (4) ◽  
pp. 5580-5593 ◽  
Author(s):  
Viraj Pandya ◽  
Joel Primack ◽  
Peter Behroozi ◽  
Avishai Dekel ◽  
Haowen Zhang ◽  
...  

ABSTRACT Hubble Space Telescope observations show that low-mass ($M_*=10^9\!-\!10^{10}\, \mathrm{M}_{\odot }$) galaxies at high redshift (z = 1.0–2.5) tend to be elongated (prolate) rather than disky (oblate) or spheroidal. This is explained in zoom-in cosmological hydrodynamical simulations by the fact that these galaxies are forming in cosmic web filaments where accretion happens preferentially along the direction of elongation. We ask whether the elongated morphology of these galaxies allows them to be used as effective tracers of cosmic web filaments at high redshift via their intrinsic alignments. Using mock light cones and spectroscopically confirmed galaxy pairs from the Cosmic Assembly Near-infared Deep Extragalactic Legacy Survey (CANDELS), we test two types of alignments: (1) between the galaxy major axis and the direction to nearby galaxies of any mass and (2) between the major axes of nearby pairs of low-mass, likely prolate, galaxies. The mock light cones predict strong signals in 3D real space, 3D redshift space, and 2D projected redshift space for both types of alignments (assuming prolate galaxy orientations are the same as those of their host prolate haloes), but we do not detect significant alignment signals in CANDELS observations. However, we show that spectroscopic redshifts have been obtained for only a small fraction of highly elongated galaxies, and accounting for spectroscopic incompleteness and redshift errors significantly degrades the 2D mock signal. This may partly explain the alignment discrepancy and highlights one of several avenues for future work.

Author(s):  
Baptiste Faure ◽  
Frédéric Bournaud ◽  
Jérémy Fensch ◽  
Emanuele Daddi ◽  
Manuel Behrendt ◽  
...  

Abstract High-redshift star-forming galaxies have very different morphologies compared to nearby ones. Indeed, they are often dominated by bright star-forming structures of masses up to 108 − 9 M⊙ dubbed «giant clumps». However, recent observations questioned this result by showing only low-mass structures or no structure at all. We use Adaptative Mesh Refinement hydrodynamical simulations of galaxies with parsec-scale resolution to study the formation of structures inside clumpy high-redshift galaxies. We show that in very gas-rich galaxies star formation occurs in small gas clusters with masses below 107 − 8 M⊙ that are themselves located inside giant complexes with masses up to 108 and sometimes 109 M⊙ . Those massive structures are similar in mass and size to the giant clumps observed in imaging surveys, in particular with the Hubble Space Telescope. Using mock observations of simulated galaxies, we show that at very high resolution with instruments like the Atacama Large Millimeter Array or through gravitational lensing, only low-mass structures are likely to be detected, and their gathering into giant complexes might be missed. This leads to the non-detection of the giant clumps and therefore introduces a bias in the detection of these structures. We show that the simulated giant clumps can be gravitationally bound even when undetected in mocks representative for ALMA observations and HST observations of lensed galaxies. We then compare the top-down fragmentation of an initially warm disc and the bottom-up fragmentation of an initially cold disc to show that the process of formation of the clumps does not impact their physical properties.


2019 ◽  
Vol 486 (1) ◽  
pp. 21-41 ◽  
Author(s):  
R M Bielby ◽  
J P Stott ◽  
F Cullen ◽  
T M Tripp ◽  
J N Burchett ◽  
...  

ABSTRACT We present the first results from a study of O vi absorption around galaxies at z < 1.44 using data from a near-infrared grism spectroscopic Hubble Space Telescope Large Programme, the Quasar Sightline and Galaxy Evolution (QSAGE) survey. QSAGE is the first grism galaxy survey to focus on the circumgalactic medium at z ∼ 1, providing a blind survey of the galaxy population. The galaxy sample is H α flux limited (f(H α) > 2 × 10−17 erg s−1 cm−2) at 0.68 < z < 1.44, corresponding to ≳0.2–0.8 M⊙ yr−1. In this first of 12 fields, we combine the galaxy data with high-resolution STIS and COS spectroscopy of the background quasar to study O vi in the circumgalactic medium. At z ∼ 1, we find O vi absorption systems up to b ∼ 350 kpc (∼4Rvir) from the nearest detected galaxy. Further, we find ${\sim }50{{\ \rm per\ cent}}$ of ≳1 M⊙ yr−1 star-forming galaxies within 2Rvir show no associated O vi absorption to a limit of at least N(O vi) = 1013.9 cm−2. That we detect O vi at such large distances from galaxies and that a significant fraction of star-forming galaxies show no detectable O vi absorption disfavours outflows from ongoing star formation as the primary medium traced by these absorbers. Instead, by combining our own low- and high-redshift data with existing samples, we find tentative evidence for many strong (N(O vi) > 1014 cm−2) O vi absorption systems to be associated with M⋆ ∼ 109.5–10 M⊙ mass galaxies (Mhalo ∼ 1011.5–12 M⊙ dark matter haloes), and infer that they may be tracing predominantly collisionally ionized gas within the haloes of such galaxies.


2020 ◽  
Vol 642 ◽  
pp. A46
Author(s):  
J. Hartke ◽  
M. Arnaboldi ◽  
O. Gerhard ◽  
L. Coccato ◽  
C. Pulsoni ◽  
...  

Context. M 105 (NGC 3379) is an early-type galaxy in the Leo I group. The Leo I group is the nearest group that contains all main galaxy types and can thus be used as a benchmark to study the properties of the intra-group light (IGL) in low-mass groups. Aims. We present a photometric survey of planetary nebulae (PNe) in the extended halo of the galaxy to characterise its PN populations and investigate the presence of an extended PN population associated with the intra-group light. Methods. We use PNe as discrete stellar tracers of the diffuse light around M 105. These PNe were identified on the basis of their bright [O III]5007 Å emission and the absence of a broad-band continuum using automated detection techniques. We compare the PN number density profile with the galaxy surface-brightness profile decomposed into metallicity components using published photometry of the Hubble Space Telescope in two halo fields. Results. We identify 226 PNe candidates within a limiting magnitude of m5007, lim = 28.1 from our Subaru-SuprimeCam imaging, covering 67.6 kpc (23 effective radii) along the major axis of M 105 and the halos of NGC 3384 and NGC 3398. We find an excess of PNe at large radii compared to the stellar surface brightness profile from broad-band surveys. This excess is related to a variation in the luminosity-specific PN number α with radius. The α-parameter value of the extended halo is more than seven times higher than that of the inner halo. We also measure an increase in the slope of the PN luminosity function at fainter magnitudes with radius. Conclusions. We infer that the radial variation of the PN population properties is due to a diffuse population of metal-poor stars ([M/H] < −1.0) following an exponential profile, in addition to the M 105 halo. The spatial coincidence between the number density profile of these metal-poor stars and the increase in the α-parameter value with radius establishes the missing link between metallicity and the post-asymptotic giant branch phases of stellar evolution. We estimate that the total bolometric luminosity associated with the exponential IGL population is 2.04 × 109 L⊙ as a lower limit. The lower limit on the IGL fraction is thus 3.8%. This work sets the stage for kinematic studies of the IGL in low-mass groups.


2016 ◽  
Vol 11 (S321) ◽  
pp. 339-341
Author(s):  
Michael V. Maseda ◽  

AbstractStar formation histories of local dwarf galaxies, derived through resolved stellar populations, appear complex and varied. The general picture derived from hydrodynamical simulations is one of cold gas accretion and bursty star formation, followed by feedback from supernovae and winds that heat and eject the central gas reservoirs. This ejection halts star formation until the material cools and re-accretes, resulting in an episodic SFH, particularly at stellar masses below ~ 109 M⊙. Such feedback has often been cited as the driving force behind the observed slowly-rising rotation curves in local dwarfs, due to an under-density of dark matter compared to theoretical models, which is one of the primary challenges to LCDM cosmology. However, these events have not yet been directly observed at high-redshift. Recently, using HST imaging and grism spectroscopy, we have uncovered an abundant population of low-mass galaxies (M* < 109 M⊙) at z = 1 - 2 that are undergoing strong bursts of star formation, in agreement with the theoretical predictions. These Extreme Emission Line Galaxies, with high specific SFRs and shallow gravitational potential wells, are ideal places to test the theoretical prediction of strong feedback-driven outflows. Here we use deep MUSE spectroscopy to search these galaxies for signatures of outflowing material, namely kinematic offsets between absorption lines (in the restframe optical and UV), which trace cool gas, and the nebular emission lines, which define the systemic redshift of the galaxy. Although the EELGs are intrinsically very faint, stacked spectra reveal blueshifted velocity centroids for Fe II absorption, which is indicative of outflowing cold gas. This represents the first constraint on outflows in M* < 109 M⊙ galaxies at z = 1 - 2. These outflows should regulate the star formation histories of low-mass galaxies at early cosmic times and thus play a crucial role in galaxy growth and evolution.


2019 ◽  
Vol 490 (3) ◽  
pp. 3830-3839 ◽  
Author(s):  
Min Bao ◽  
Yan-mei Chen ◽  
Qi-rong Yuan ◽  
Yong Shi ◽  
Dmitry Bizyaev ◽  
...  

ABSTRACT Using the integral field unit (IFU) data from Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we study the kinematics of gas and stellar components in an edge-on Seyfert 2 galaxy, SDSS J171359.00+333625.5, with X-shaped bi-conical outflows. The gas and stars therein are found to be counter-rotating, indicating that the collision between the inner and external gas might be an effective way to dissipate the angular momentum, which leads to remarkable gas accretion into the galaxy centre. Large [O iii]λ5007 equivalent width and AGN-like line ratio in the large bi-conical region suggest that the gas is ionized by the central AGN. The gas velocity in the bi-cone region shows that ionized gas is receding relative to the galaxy centre, which could be the joint effect of inflows, outflows, and disc rotation. We are probably witnessing the case where a great amount of gas in the disc is being efficiently accreted into the central black hole, and the AGN-driven galactic winds are blown out along the bi-cone. The kinematics of oxygen, including rotation velocity and velocity dispersion, is different from other elements, like hydrogen, nitrogen, and sulphur. The rotation velocity estimated from oxygen is slower than from other elements. The velocity dispersion of other elements follows galactic gravitational potential, while the velocity dispersion of oxygen stays roughly constant along the galactic major-axis. The further advanced observations, e.g. of cold gas or with an IFU of higher spatial resolution, are required to better understand this object.


2008 ◽  
Vol 4 (S254) ◽  
pp. 35-40
Author(s):  
Brant E. Robertson

AbstractThe efficiency of star formation governs many observable properties of the cosmological galaxy population, yet many current models of galaxy formation largely ignore the important physics of star formation and the interstellar medium (ISM). Using hydrodynamical simulations of disk galaxies that include a treatment of the molecular ISM and star formation in molecular clouds (Robertson & Kravtsov 2008), we study the influence of star formation efficiency and molecular hydrogen abundance on the properties of high-redshift galaxy populations. In this work, we focus on a model of low-mass, star forming galaxies at 1 ≲ z ≲ 2 that may host long duration gamma-ray bursts (GRBs). Observations of GRB hosts have revealed a population of faint systems with star formation properties that often differ from Lyman-break galaxies (LBGs) and more luminous high-redshift field galaxies. Observed GRB sightlines are deficient in molecular hydrogen, but it is unclear to what degree this deficiency owes to intrinsic properties of the galaxy or the impact the GRB has on its environment. We find that hydrodynamical simulations of low-stellar mass systems at high-redshifts can reproduce the observed star formation rates and efficiencies of GRB host galaxies at redshifts 1 ≲ z ≲ 2. We show that the compact structure of low-mass high-redshift GRB hosts may lead to a molecular ISM fraction of a few tenths, well above that observed in individual GRB sightlines. However, the star formation rates of observed GRB host galaxies imply molecular gas masses of 108 – 109M⊙ similar to those produced in the simulations, and may therefore imply fairly large average H2 fractions in their ISM.


2020 ◽  
Vol 642 ◽  
pp. A126 ◽  
Author(s):  
M. Ricci ◽  
R. Adam ◽  
D. Eckert ◽  
P. Ade ◽  
P. André ◽  
...  

High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel’dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system (M500 ∼ 2 × 1014 M⊙) at z = 0.97 detected from the XXL survey. We combine NIKA2 SZ data, XMM-Newton X-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∼r500, and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters at z ∼ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST and Euclid.


2020 ◽  
Vol 492 (3) ◽  
pp. 3779-3793 ◽  
Author(s):  
Hiroyuki Hirashita ◽  
Maria S Murga

ABSTRACT We formulate and calculate the evolution of dust in a galaxy focusing on the distinction among various dust components – silicate, aromatic carbon, and non-aromatic carbon. We treat the galaxy as a one-zone object and adopt the evolution model of grain size distribution developed in our previous work. We further include aromatization and aliphatization (inverse reaction of aromatization). We regard small aromatic grains in a radius range of 3–50 Å as polycyclic aromatic hydrocarbons (PAHs). We also calculate extinction curves in a consistent manner with the abundances of silicate and aromatic and non-aromatic carbonaceous dust. Our model nicely explains the PAH abundance as a function of metallicity in nearby galaxies. The extinction curve becomes similar to the Milky Way curve at an age of ∼10 Gyr, in terms of the carbon bump strength and the far-ultraviolet slope. We also apply our model to starburst galaxies by shortening the star formation time-scale (0.5 Gyr) and increasing the dense-gas fraction (0.9), finding that the extinction curve maintains bumpless shapes (because of low aromatic fractions), which are similar to the extinction curves observed in the Small Magellanic Cloud and high-redshift quasars. Thus, our model successfully explains the variety in extinction curve shapes at low and high redshifts.


2019 ◽  
Vol 489 (2) ◽  
pp. 2439-2470 ◽  
Author(s):  
Nicholas A Henden ◽  
Ewald Puchwein ◽  
Debora Sijacki

Abstract We study the redshift evolution of the X-ray and Sunyaev–Zel’dovich (SZ) scaling relations for galaxy groups and clusters in the fable suite of cosmological hydrodynamical simulations. Using an expanded sample of 27 high-resolution zoom-in simulations, together with a uniformly sampled cosmological volume to sample low-mass systems, we find very good agreement with the majority of observational constraints up to z ∼ 1. We predict significant deviations of all examined scaling relations from the simple self-similar expectations. While the slopes are approximately independent of redshift, the normalizations evolve positively with respect to self-similarity, even for commonly used mass proxies such as the YX parameter. These deviations are due to a combination of factors, including more effective active galactic nuclei feedback in lower mass haloes, larger binding energy of gas at a given halo mass at higher redshifts, and larger non-thermal pressure support from kinetic motions at higher redshifts. Our results have important implications for cluster cosmology from upcoming SZ surveys such as SPT-3G, ACTpol, and CMB-S4, as relatively small changes in the observable–mass scaling relations (within theoretical uncertainties) have a large impact on the predicted number of high-redshift clusters and hence on our ability to constrain cosmology using cluster abundances. In addition, we find that the intrinsic scatter of the relations, which agrees well with most observational constraints, increases at lower redshifts and for lower mass systems. This calls for a more complex parametrization than adopted in current observational studies to be able to accurately account for selection biases.


2020 ◽  
Vol 494 (2) ◽  
pp. 2851-2860 ◽  
Author(s):  
Sunmyon Chon ◽  
Kazuyuki Omukai

ABSTRACT Direct collapse black hole (DCBH) formation with mass ≳105 M⊙ is a promising scenario for the origin of high-redshift supermassive black holes. It has usually been supposed that the DCBH can only form in the primordial gas since the metal enrichment enhances the cooling ability and causes the fragmentation into smaller pieces. What actually happens in such an environment, however, has not been explored in detail. Here, we study the impact of the metal enrichment on the clouds, conducting hydrodynamical simulations to follow the cloud evolution in cases with different degree of the metal enrichment Z/Z⊙ = 10−6 to 10−3. Below Z/Z⊙ = 10−6, metallicity has no effect and supermassive stars form along with a small number of low-mass stars. With more metallicity $Z/\mathrm{ Z}_{\odot } \gtrsim5 \times 10^{-6}$, although the dust cooling indeed promotes fragmentation of the cloud core and produces about a few thousand low-mass stars, the accreting flow preferentially feeds the gas to the central massive stars, which grows supermassive as in the primordial case. We term this formation mode as the super competitive accretion, where only the central few stars grow supermassive while a large number of other stars are competing for the gas reservoir. Once the metallicity exceeds 10−3 Z⊙ and metal-line cooling becomes operative, the central star cannot grow supermassive due to lowered accretion rate. Supermassive star formation by the super competitive accretion opens up a new window for seed BHs, which relaxes the condition on metallicity and enhances the seed BH abundance.


Sign in / Sign up

Export Citation Format

Share Document