scholarly journals STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408–5354 and WGD 2038–4008

2020 ◽  
Vol 498 (3) ◽  
pp. 3241-3274 ◽  
Author(s):  
E J Buckley-Geer ◽  
H Lin ◽  
C E Rusu ◽  
J Poh ◽  
A Palmese ◽  
...  

ABSTRACT In time-delay cosmography, three of the key ingredients are (1) determining the velocity dispersion of the lensing galaxy, (2) identifying galaxies and groups along the line of sight with sufficient proximity and mass to be included in the mass model, and (3) estimating the external convergence κext from less massive structures that are not included in the mass model. We present results on all three of these ingredients for two time-delay lensed quad quasar systems, DES J0408–5354 and WGD 2038–4008 . We use the Gemini, Magellan, and VLT telescopes to obtain spectra to both measure the stellar velocity dispersions of the main lensing galaxies and to identify the line-of-sight galaxies in these systems. Next, we identify 10 groups in DES J0408–5354 and two groups in WGD 2038–4008 using a group-finding algorithm. We then identify the most significant galaxy and galaxy-group perturbers using the ‘flexion shift’ criterion. We determine the probability distribution function of the external convergence κext for both of these systems based on our spectroscopy and on the DES-only multiband wide-field observations. Using weighted galaxy counts, calibrated based on the Millennium Simulation, we find that DES J0408–5354 is located in a significantly underdense environment, leading to a tight (width $\sim 3{{\ \rm per\ cent}}$), negative-value κext distribution. On the other hand, WGD 2038–4008 is located in an environment of close to unit density, and its low source redshift results in a much tighter κext of $\sim 1{{\ \rm per\ cent}}$, as long as no external shear constraints are imposed.

2019 ◽  
Vol 498 (1) ◽  
pp. 1440-1468 ◽  
Author(s):  
Cristian E Rusu ◽  
Kenneth C Wong ◽  
Vivien Bonvin ◽  
Dominique Sluse ◽  
Sherry H Suyu ◽  
...  

ABSTRACT We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033 − 4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 yr of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be $4784_{-248}^{+399}~\mathrm{Mpc}$, an average precision of $6.6{{\ \rm per\ cent}}$. This translates to a Hubble constant $H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}$, assuming a flat ΛCDM cosmology with a uniform prior on Ωm in the range [0.05, 0.5]. This work is part of the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII).


2010 ◽  
Vol 6 (S271) ◽  
pp. 110-118
Author(s):  
Joe Wolf

AbstractBy manipulating the spherical Jeans equation, Wolf et al. (2010) show that the mass enclosed within the 3D deprojected half-light radius r1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy as long as the projected velocity dispersion profile is fairly flat near the half-light radius, as is typically observed. They find M1/2 = 3 G−1 〈σ2los〉 r1/2 ≃ 4 G−1 〈σ2los〉 Re, where 〈σ2los〉 is the luminosity-weighted square of the line-of-sight velocity dispersion and Re is the 2D projected half-light radius. This finding can be used to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of mass approximately 3 × 109 M⊙, assuming a ΛCDM cosmology. In addition, the dynamical I-band mass-to-light ratio ϒI1/2 vs. M1/2 relation for dispersion-supported galaxies follows a U-shape, with a broad minimum near ϒI1/2 ≃ 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to ϒI1/2 ≃ 3,200 for ultra-faint dSphs, and a more shallow rise to ϒI1/2 ≃ 800 for galaxy cluster spheroids.


2020 ◽  
Vol 642 ◽  
pp. A194 ◽  
Author(s):  
D. Gilman ◽  
S. Birrer ◽  
T. Treu

Time delay cosmography uses the arrival time delays between images in strong gravitational lenses to measure cosmological parameters, in particular the Hubble constant H0. The lens models used in time delay cosmography omit dark matter subhalos and line-of-sight halos because their effects are assumed to be negligible. We explicitly quantify this assumption by analyzing mock lens systems that include full populations of dark matter subhalos and line-of-sight halos, applying the same modeling assumptions used in the literature to infer H0. We base the mock lenses on six quadruply imaged quasars that have delivered measurements of the Hubble constant, and quantify the additional uncertainties and/or bias on a lens-by-lens basis. We show that omitting dark substructure does not bias inferences of H0. However, perturbations from substructure contribute an additional source of random uncertainty in the inferred value of H0 that scales as the square root of the lensing volume divided by the longest time delay. This additional source of uncertainty, for which we provide a fitting function, ranges from 0.7 − 2.4%. It may need to be incorporated in the error budget as the precision of cosmographic inferences from single lenses improves, and it sets a precision limit on inferences from single lenses.


2020 ◽  
Vol 494 (3) ◽  
pp. 3156-3165 ◽  
Author(s):  
Anton T Jaelani ◽  
Anupreeta More ◽  
Alessandro Sonnenfeld ◽  
Masamune Oguri ◽  
Cristian E Rusu ◽  
...  

ABSTRACT We report the serendipitous discovery of HSC J0904–0102, a quadruply lensed Lyman-break galaxy (LBG) in the Survey of Gravitationally-lensed Objects in Hyper Suprime-Cam Imaging (SuGOHI). Owing to its point-like appearance, the source was thought to be a lensed active galactic nucleus. We obtained follow-up spectroscopic data with the Gemini Multi-Object Spectrographs on the Gemini South Telescope, which confirmed this to be a lens system. The deflecting foreground galaxy is a typical early-type galaxy at a high redshift of $z_{\ell}=0.957$ with stellar velocity dispersion $\sigma_v=259\pm56$ km s−1. The lensed source is identified as an LBG at $z_{\rm s}=3.403$, based on the sharp drop bluewards of Lyα and other absorption features. A simple lens mass model for the system, assuming a singular isothermal ellipsoid, yields an Einstein radius of $\theta_{\rm Ein}=1.23$ arcsec and a total mass within the Einstein radius of $M_{\rm Ein}=(5.55\pm0.24)\times10^{11}\rm M_{\odot}$ corresponding to a velocity dispersion of $\sigma_{\rm SIE}=283\pm3$ km s−1, which is in good agreement with the value derived spectroscopically. The most isolated lensed LBG image has a magnification of $\sim 6.5$. In comparison with other lensed LBGs and typical $z\sim4$ LBG populations, HSC J0904–0102 is unusually compact, an outlier at $>2\sigma$ confidence. Together with a previously discovered SuGOHI lens, HSC J1152+0047, which is similarly compact, we believe that the HSC survey is extending LBG studies down to smaller galaxy sizes.


2019 ◽  
Vol 485 (4) ◽  
pp. 5086-5095
Author(s):  
C Spiniello ◽  
A V Sergeyev ◽  
L Marchetti ◽  
C Tortora ◽  
N R Napolitano ◽  
...  

ABSTRACT Quadruply lensed quasars are extremely rare objects, but incredibly powerful cosmological tools. Only few dozen are known in the whole sky. Here we present the spectroscopic confirmation of two new quadruplets WG0214-2105 and WG2100-4452 discovered by Agnello & Spiniello (2018) within the Dark Energy Survey public footprints. We have conducted spectroscopic follow-up of these systems with the Southern African Large Telescope as part of a program that aims at confirming the largest possible number of strong gravitational lenses in the equatorial and Southern hemisphere. For both systems, we present the sources spectra that allowed us to estimate their redshifts and unambiguously confirm their lensing nature. For the brighter deflector (WG2100-4452) we measure the spectroscopic redshift and the stellar velocity dispersion from optical absorption lines in the spectrum. For the other system we infer the lens redshift from photometry, being the quality of the spectra not good enough. We obtain photometry for both lenses, directly from multiband images, isolating the lenses from the quasars. One of the quadruplets, WG0214-2105, was also observed by Pan-STARRS, allowing us to estimate the apparent brightness of each quasar image at two different epochs, and thus to find evidence for flux variability. This result could suggest a microlensing event for the faintest components, although intrinsic variability cannot be excluded with only two epochs. Finally, we present simple lens models for both quadruplets, obtaining Einstein radii, singular isothermal ellipsoid velocity dispersions, ellipticities, and position angles of the lenses, as well as time-delay predictions assuming a concordance cosmological model.


Author(s):  
Alexandres Lazar ◽  
James S Bullock ◽  
Michael Boylan-Kolchin ◽  
Robert Feldmann ◽  
Onur Çatmabacak ◽  
...  

Abstract A promising route for revealing the existence of dark matter structures on mass scales smaller than the faintest galaxies is through their effect on strong gravitational lenses. We examine the role of local, lens-proximate clustering in boosting the lensing probability relative to contributions from substructure and unclustered line-of-sight (LOS) haloes. Using two cosmological simulations that can resolve halo masses of Mhalo ≃ 109 M⊙ (in a simulation box of length Lbox ∼ 100 Mpc) and 107 M⊙ (Lbox ∼ 20 Mpc), we demonstrate that clustering in the vicinity of the lens host produces a clear enhancement relative to an assumption of unclustered haloes that persists to >20 Rvir. This enhancement exceeds estimates that use a two-halo term to account for clustering, particularly within 2 − 5 Rvir. We provide an analytic expression for this excess, clustered contribution. We find that local clustering boosts the expected count of 109 M⊙ perturbing haloes by ${\sim }35{{\ \rm per\ cent}}$ compared to substructure alone, a result that will significantly enhance expected signals for low-redshift (zl ≃ 0.2) lenses, where substructure contributes substantially compared to LOS haloes. We also find that the orientation of the lens with respect to the line of sight (e.g. whether the line of sight passes through the major axis of the lens) can also have a significant effect on the lensing signal, boosting counts by an additional $\sim 50{{\ \rm per\ cent}}$ compared to a random orientations. This could be important if discovered lenses are biased to be oriented along their principal axis.


2014 ◽  
Vol 785 (2) ◽  
pp. 148 ◽  
Author(s):  
Sukrit Ranjan ◽  
David Charbonneau ◽  
Jean-Michel Désert ◽  
Nikku Madhusudhan ◽  
Drake Deming ◽  
...  

2006 ◽  
Vol 2 (S235) ◽  
pp. 230-230
Author(s):  
Ivelina Momcheva ◽  
Kurtis Williams ◽  
Ann Zabludoff ◽  
Charles Keeton

AbstractPoor groups are common and interactive environments for galaxies, and thus are important laboratories for studying galaxy evolution. Unfortunately, little is known about groups at z ≥ 0.1, because of the difficulty in identifying them in the first place. Here we present results from our ongoing survey of the environments of strong gravitational lenses, in which we have so far discovered six distant (z ≥ 0.5) groups of galaxies. As in the local Universe, the highest velocity dispersion groups contain a brightest member spatially coincident with the group centroid, whereas lower-dispersion groups tend to have an offset brightest group galaxy. This suggests that higher-dispersion groups are more dynamically relaxed than lower-dispersion groups and that at least some evolved groups exist by z ~ 0.5. We also compare the galaxy and hot gas kinematics with those of similarly distant clusters and of nearby groups.


2013 ◽  
Vol 9 (S298) ◽  
pp. 411-411
Author(s):  
Kohei Hayashi ◽  
Masashi Chiba

AbstractWe construct axisymmetric mass models for dwarf spheroidal (dSph) galaxies in the Milky Way to obtain realistic limits on the non-spherical structure of their dark halos. This is motivated by the fact that the observed luminous parts of the dSphs are actually non-spherical and cold dark matter models predict non-spherical virialized dark halos on sub-galactic scales. Applying these models to line-of-sight velocity dispersion profiles along three position angles in six Galactic satellites, we find that the best fitting cases for most of the dSphs yield not spherical but oblate and flattened dark halos. We also find that the mass of the dSphs enclosed within inner 300 pc varies depending on their total luminosities, contrary to the conclusion of previous spherical models. This suggests the importance of considering non-spherical shapes of dark halos in dSph mass models.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4631
Author(s):  
Pedro Cruz ◽  
Pedro Batista

The existence of multiple solutions to an attitude determination problem impacts the design of estimation schemes, potentially increasing the errors by a significant value. It is therefore essential to identify such cases in any attitude problem. In this paper, the cases where multiple attitudes satisfy all constraints of a three-vehicle heterogeneous formation are identified. In the formation considered herein, the vehicles measure inertial references and relative line-of-sight vectors. Nonetheless, the line of sight between two elements of the formation is restricted, and these elements are denoted as deputies. The attitude determination problem is characterized relative to the number of solutions associated with each configuration of the formation. There are degenerate and ambiguous configurations that result in infinite or exactly two solutions, respectively. Otherwise, the problem has a unique solution. The degenerate configurations require some collinearity between independent measurements, whereas the ambiguous configurations result from symmetries in the formation measurements. The conditions which define all such configurations are determined in this work. Furthermore, the ambiguous subset of configurations is geometrically interpreted resorting to the planes defined by specific measurements. This subset is also shown to be a zero-measure subset of all possible configurations. Finally, a maneuver is simulated to illustrate and validate the conclusions. As a result of this analysis, it is concluded that, in general, the problem has one attitude solution. Nonetheless, there are configurations with two or infinite solutions, which are identified in this work.


Sign in / Sign up

Export Citation Format

Share Document