scholarly journals Abundant serendipitous emission line sources with JWST/NIRSpec

2019 ◽  
Vol 486 (3) ◽  
pp. 3290-3306 ◽  
Author(s):  
Michael V Maseda ◽  
Marijn Franx ◽  
Jacopo Chevallard ◽  
Emma Curtis-Lake

Abstract The James Webb Space Telescope will provide observational capabilities that far exceed those of current ground- or space-based instrumentation. In particular, the Near-Infrared Spectrograph (NIRSpec) instrument will take highly sensitive spectroscopic data for hundreds of objects simultaneously from 0.6 to 5.3 $\mu$m. Current photometric observations suggest a large and increasing number of faint (MUV > −16) galaxies at high redshift, with increasing evidence that galaxies at these redshifts have optical emission lines with extremely high equivalent widths. A simple model of their emission line fluxes and number density evolution with redshift is used to predict the number of galaxies that NIRSpec will serendipitously observe during normal observations with the microshutter array. At exposure times of ≈20 h in the low-resolution prism mode, the model predicts that, on average, every open 1 × 3 ‘microslit’ will contain an un-targeted galaxy with a detectable [O iii] and/or H α emission line; while most of these detections are predicted to be of [O iii], H α detections alone would still number 0.56 per open ‘microslit’ for this exposure time. Many of these objects are spectroscopically detectable even when they are fainter than current photometric limits and/or their flux centroids lie outside of the open microshutter area. The predicted number counts for such galaxies match z ∼ 2 observations of [O iii] emitters from slitless grism spectroscopic surveys, as well as theoretical predictions based on sophisticated modelling of galaxy spectral energy distributions. These serendipitous detections could provide the largest numbers of z > 6 spectroscopic confirmations in the deepest NIRSpec surveys.

2015 ◽  
Vol 11 (S319) ◽  
pp. 11-11
Author(s):  
William V. Dixon ◽  
Swara Ravindranath ◽  
Chris J. Willott

AbstractThe Near Infrared Imager and Slitless Spectrograph (NIRISS) aboard the James Webb Space Telescope (JWST) will offer wide-field slitless spectroscopy (WFSS) with a resolving power R = 150 at wavelengths from 0.8 to 2.25 microns. In this band, NIRISS will be sensitive to Lyman α emission lines and continuum breaks in the spectra of galaxies with redshifts 6 < z < 17, allowing it to probe the first stars and ionizing sources in the early universe. NIRISS observations of the high-redshift universe will provide a wealth of information on foreground objects, creating a unique library of optical emission-line spectra from the faintest galaxies at lower redshifts. To explore its ability to identify and characterize galaxies at all redshifts, we have modeled a NIRISS observation of a massive strong-lensing galaxy cluster and analyzed the synthetic images using standard software tools. Our simulations demonstrate that WFSS with NIRISS will provide a powerful tool for the exploration of galaxies near and far.


2019 ◽  
Vol 621 ◽  
pp. A82 ◽  
Author(s):  
S. Vercellone ◽  
P. Romano ◽  
G. Piano ◽  
V. Vittorini ◽  
I. Donnarumma ◽  
...  

Context. The flat-spectrum radio quasar 4C +71.07 is a high-redshift (z = 2.172), γ-loud blazar whose optical emission is dominated by thermal radiation from the accretion disc. Aims. 4C +71.07 has been detected in outburst twice by the AGILE γ-ray satellite during the period from the end of October to mid-November 2015, when it reached a γ-ray flux of the order of F(E >  100 MeV)=(1.2 ± 0.3)×10−6 photons cm−2 s−1 and F(E > 100 MeV)=(3.1 ± 0.6)×10−6 photons cm−2 s−1, respectively, allowing us to investigate the properties of the jet and the emission region. Methods. We investigated its spectral energy distribution by means of almost-simultaneous observations covering the cm, mm, near-infrared, optical, ultraviolet, X-ray, and γ-ray energy bands obtained by the GASP-WEBT Consortium and the Swift, AGILE, and Fermi satellites. Results. The spectral energy distribution of the second γ-ray flare (whose energy coverage is more dense) can be modelled by means of a one-zone leptonic model, yielding a total jet power of about 4 × 1047 erg s−1. Conclusions. During the most prominent γ-ray flaring period our model is consistent with a dissipation region within the broad-line region. Moreover, this class of high-redshift, flat-spectrum radio quasars with high-mass black holes might be good targets for future γ-ray satellites such as e-ASTROGAM.


2019 ◽  
Vol 489 (2) ◽  
pp. 2355-2366 ◽  
Author(s):  
S De Barros ◽  
P A Oesch ◽  
I Labbé ◽  
M Stefanon ◽  
V González ◽  
...  

ABSTRACT The James Webb Space Telescope will allow to spectroscopically study an unprecedented number of galaxies deep into the reionization era, notably by detecting [O iii]λλ4959, 5007, and H β nebular emission lines. To efficiently prepare such observations, we photometrically select a large sample of galaxies at z ∼ 8 and study their rest-frame optical emission lines. Combining data from the GOODS Re-ionization Era wide-Area Treasury from Spitzer (GREATS) survey and from HST we perform spectral energy distribution (SED) fitting, using synthetic SEDs from a large grid of photoionization models. The deep Spitzer/IRAC data combined with our models exploring a large parameter space enables to constrain the [O iii] + H β fluxes and equivalent widths for our sample, as well as the average physical properties of z ∼ 8 galaxies, such as the ionizing photon production efficiency with $\log (\xi _\mathrm{ion}/\mathrm{erg}^{-1}\mathrm{Hz})\ge 25.77$. We find a relatively tight correlation between the [O iii] + H β and UV luminosity, which we use to derive for the first time the [O iii]λλ4959, 5007 + H β luminosity function (LF) at z ∼ 8. The z ∼ 8 [O iii] + H β LF is higher at all luminosities compared to lower redshift, as opposed to the UV LF, due to an increase of the [O iii] + H β luminosity at a given UV luminosity from z ∼ 3 to z ∼ 8. Finally, using the [O iii] + H β LF, we make predictions for JWST/NIRSpec number counts of z ∼ 8 galaxies. We find that the current wide-area extragalactic legacy fields are too shallow to use JWST at maximal efficiency for z ∼ 8 spectroscopy even at 1 h depth and JWST pre-imaging to ≳30 mag will be required.


2022 ◽  
Vol 163 (2) ◽  
pp. 45
Author(s):  
G. H. Rieke ◽  
Kate Su ◽  
G. C. Sloan ◽  
E. Schlawin

Abstract A challenge in absolute calibration is to relate very bright stars with physical flux measurements to faint ones within range of modern instruments, e.g., those on large ground-based telescopes or the James Webb Space Telescope (JWST). We propose Sirius as the fiducial color standard. It is an A0V star that is slowly rotating and does not have infrared excesses due to either hot dust or a planetary debris disk; it also has a number of accurate (∼1%–2%) absolute flux measurements. We accurately transfer the near-infrared flux from Sirius to BD +60 1753, an unobscured early A-type star (A1V, V ≈ 9.6, E(B – V) ≈ 0.009) that is faint enough to serve as a primary absolute flux calibrator for JWST. Its near-infrared spectral energy distribution and that of Sirius should be virtually identical. We have determined its output relative to that of Sirius in a number of different ways, all of which give consistent results within ∼1%. We also transfer the calibration to GSPC P330-E, a well-calibrated close solar analog (G2V). We have emphasized the 2MASS K S band, since it represents a large number and long history of measurements, but the theoretical spectra (i.e., from CALSPEC) of these stars can be used to extend this result throughout the near- and mid-infrared.


2019 ◽  
Vol 490 (3) ◽  
pp. 3667-3678 ◽  
Author(s):  
Zhongxu Zhai ◽  
Andrew Benson ◽  
Yun Wang ◽  
Gustavo Yepes ◽  
Chia-Hsun Chuang

ABSTRACT We perform a simulation with Galacticus, a semi-analytical galaxy formation model, to predict the number counts of H α and [O iii] emitting galaxies. With a state-of-the-art N-body simulation, UNIT, we first calibrate Galacticus with the current observation of H α luminosity function. The resulting model coupled with a dust attenuation model, can reproduce the current observations, including the H α luminosity function from HiZELS and number density from WISP. We extrapolate the model prediction to higher redshift and the result is found to be consistent with previous investigations. We then use the same galaxy formation model to predict the number counts for [O iii] emitting galaxies. The result provides further validation of our galaxy formation model and dust model. We present number counts of H α and [O iii] emission line galaxies for three different line flux limits: 5 × 10−17erg s−1 cm−2, 1 × 10−16 erg s−1 cm−2 (6.5σ nominal depth for WFIRST GRS), and 2 × 10−16 erg s−1 cm−2 (3.5σ depth of Euclid GRS). At redshift 2 &lt; z &lt; 3, our model predicts that WFIRST can observe hundreds of [O iii] emission line galaxies per square degree with a line flux limit of 1 × 10−16 erg s−1 cm−2. This will provide accurate measurement of large-scale structure to probe dark energy over a huge cosmic volume to an unprecedented high redshift. Finally, we compare the flux ratio of H α/[O iii] within the redshift range of 0 &lt; z &lt; 3. Our results show the known trend of increasing H α/[O iii] flux ratio with H α flux at low redshift, which becomes a weaker trend at higher redshifts.


Author(s):  
D. Carrasco ◽  
M. Trenti ◽  
S. Mutch ◽  
P. A. Oesch

AbstractThe luminosity function is a fundamental observable for characterising how galaxies form and evolve throughout the cosmic history. One key ingredient to derive this measurement from the number counts in a survey is the characterisation of the completeness and redshift selection functions for the observations. In this paper, we present GLACiAR, an open python tool available on GitHub to estimate the completeness and selection functions in galaxy surveys. The code is tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman-break technique, but it can be applied broadly. The code generates artificial galaxies that follow Sérsic profiles with different indexes and with customisable size, redshift, and spectral energy distribution properties, adds them to input images, and measures the recovery rate. To illustrate this new software tool, we apply it to quantify the completeness and redshift selection functions for J-dropouts sources (redshift z ~ 10 galaxies) in the Hubble Space Telescope Brightest of Reionizing Galaxies Survey. Our comparison with a previous completeness analysis on the same dataset shows overall agreement, but also highlights how different modelling assumptions for the artificial sources can impact completeness estimates.


1998 ◽  
Vol 179 ◽  
pp. 337-338
Author(s):  
M.W. Kümmel ◽  
S.J. Wagner

Log N - log S diagrams are being used as powerful diagnostic tools to probe evolutionary properties of different extragalactic populations. In the optical/near-infrared regime the discrepancy between near-infrared number counts which follow theoretical predictions and counts in the B band which show an excess density revealed a new population of galaxies. The nature of this population of faint blue galaxies is still unknown.


2019 ◽  
Vol 631 ◽  
pp. A123 ◽  
Author(s):  
Fang-Ting Yuan ◽  
Denis Burgarella ◽  
David Corre ◽  
Veronique Buat ◽  
Médéric Boquien ◽  
...  

Context. Nebular emission lines are critical to measure physical properties in the ionized gas (e.g., metallicity, the star formation rate, or dust attenuation). They also account for a significant fraction of broadband fluxes, in particular at the highest redshifts, and therefore can strongly affect the determination of other physical properties, such as the stellar mass, which are crucial in shaping our understanding of galaxy formation and evolution. Aims. We investigate a sample of 51 Lyman break galaxies at 3.0 <  zspec <  3.8 with detected [OIII] line emissions and estimated the physical properties of these galaxies to examine the impact of including nebular emission data in the Spectral energy distribution (SED) fitting. Methods. We used the Code Investigating GALaxy Emission (CIGALE) to fit the rest-frame ultraviolet-to-near-infrared SEDs of these galaxies and their emission line data simultaneously. We ran CIGALE with and without the nebular model or the emission line data, and compare the results to show the importance of including the nebular emission line data in the SED fitting. Results. We find that without the nebular model, the SED fitting overestimates the stellar mass due to the strong [OIII] lines that are redshifted to the Ks-band, which is consistent with previous results. The emission line data are necessary to constrain the nebular model in the SED fitting. We examine the Ks-band excess, which is mostly used to estimate the emissions of the [OIII]+Hβ lines when there is no spectral data, and we find that the estimation and observation are statistically consistent. However, the difference can reach up to more than 1 dex in some catastrophic cases, which shows the importance of obtaining spectroscopic measurements for these lines. We also estimate the equivalent width of the Hβ absorption and find it negligible compared to the Hβ emission. Conclusions. Line emission is important to constrain the nebular models and to obtain reliable estimates of the physical properties of galaxies. These data should be taken into account in the SED fitting.


2003 ◽  
Vol 20 (2) ◽  
pp. 196-202 ◽  
Author(s):  
M. T. Whiting ◽  
P. Majewski ◽  
R. L. Webster

AbstractWe present photometric observations of six radio-loud quasars that were detected by the COMPTEL gamma-ray telescope. The data encompass seven wavebands in the optical and near infrared. After correction for Galactic extinction, we find a wide range in optical slopes. Two sources are as blue as optically-selected quasars, and are likely to be dominated by the accretion disc emission, while three others show colours consistent with a red synchrotron component. We discuss the properties of the COMPTEL sample of quasars, as well as the implications our observations have for multiwavelength modelling of gamma-ray quasars.


2020 ◽  
Vol 640 ◽  
pp. A67
Author(s):  
O. B. Kauffmann ◽  
O. Le Fèvre ◽  
O. Ilbert ◽  
J. Chevallard ◽  
C. C. Williams ◽  
...  

We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <  z <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log(M*/M⊙) > 6 and redshifts of 0 <  z <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z >  5 galaxy samples can be reduced to < 0.01 arcmin−2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <  z <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes mUV <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.


Sign in / Sign up

Export Citation Format

Share Document