scholarly journals The Optical Emission from Gamma-Ray Quasars

2003 ◽  
Vol 20 (2) ◽  
pp. 196-202 ◽  
Author(s):  
M. T. Whiting ◽  
P. Majewski ◽  
R. L. Webster

AbstractWe present photometric observations of six radio-loud quasars that were detected by the COMPTEL gamma-ray telescope. The data encompass seven wavebands in the optical and near infrared. After correction for Galactic extinction, we find a wide range in optical slopes. Two sources are as blue as optically-selected quasars, and are likely to be dominated by the accretion disc emission, while three others show colours consistent with a red synchrotron component. We discuss the properties of the COMPTEL sample of quasars, as well as the implications our observations have for multiwavelength modelling of gamma-ray quasars.

2019 ◽  
Vol 486 (3) ◽  
pp. 3290-3306 ◽  
Author(s):  
Michael V Maseda ◽  
Marijn Franx ◽  
Jacopo Chevallard ◽  
Emma Curtis-Lake

Abstract The James Webb Space Telescope will provide observational capabilities that far exceed those of current ground- or space-based instrumentation. In particular, the Near-Infrared Spectrograph (NIRSpec) instrument will take highly sensitive spectroscopic data for hundreds of objects simultaneously from 0.6 to 5.3 $\mu$m. Current photometric observations suggest a large and increasing number of faint (MUV > −16) galaxies at high redshift, with increasing evidence that galaxies at these redshifts have optical emission lines with extremely high equivalent widths. A simple model of their emission line fluxes and number density evolution with redshift is used to predict the number of galaxies that NIRSpec will serendipitously observe during normal observations with the microshutter array. At exposure times of ≈20 h in the low-resolution prism mode, the model predicts that, on average, every open 1 × 3 ‘microslit’ will contain an un-targeted galaxy with a detectable [O iii] and/or H α emission line; while most of these detections are predicted to be of [O iii], H α detections alone would still number 0.56 per open ‘microslit’ for this exposure time. Many of these objects are spectroscopically detectable even when they are fainter than current photometric limits and/or their flux centroids lie outside of the open microshutter area. The predicted number counts for such galaxies match z ∼ 2 observations of [O iii] emitters from slitless grism spectroscopic surveys, as well as theoretical predictions based on sophisticated modelling of galaxy spectral energy distributions. These serendipitous detections could provide the largest numbers of z > 6 spectroscopic confirmations in the deepest NIRSpec surveys.


2019 ◽  
Vol 629 ◽  
pp. A9
Author(s):  
J. Álvarez-Márquez ◽  
L. Colina ◽  
R. Marques-Chaves ◽  
D. Ceverino ◽  
A. Alonso-Herrero ◽  
...  

The James Webb Space Telescope (JWST) will provide deep imaging and spectroscopy for sources at redshifts above 6, covering the entire Epoch of Reionization (EoR, 6 <  z <  10), and enabling the detailed exploration of the nature of the different sources during the first 1 Gyr of the history of the Universe. The Medium Resolution Spectrograph (MRS) of the mid-IR Instrument (MIRI) will be the only instrument on board JWST able to observe the brightest optical emission lines Hα and [OIII]0.5007 μm at redshifts above 7 and 9, respectively, providing key insights into the physical properties of sources during the early phases of the EoR. This paper presents a study of the Hα fluxes predicted by state-of-the-art FIRSTLIGHT cosmological simulations for galaxies at redshifts of 6.5–10.5, and its detectability with MIRI. Deep (40 ks) spectroscopic integrations with MRS will be able to detect (signal-to-noise ratio > 5) EoR sources at redshifts above 7 with intrinsic star formation rates (SFR) of more than 2 M⊙ yr−1, and stellar masses above 4–9 × 107 M⊙. These limits cover the upper end of the SFR and stellar mass distribution at those redshifts, representing ∼6% and ∼1% of the predicted FIRSTLIGHT population at the 6.5–7.5 and 7.5–8.5 redshift ranges, respectively. In addition, the paper presents realistic MRS simulated observations of the expected rest-frame optical and near-infrared spectra for some spectroscopically confirmed EoR sources recently detected by ALMA as [OIII]88 μm emitters. The MRS simulated spectra cover a wide range of low metallicities from about 0.2–0.02 Z⊙, and different [OIII]88 μm/[OIII]0.5007 μm line ratios. The simulated 10 ks MRS spectra show S/N in the range of 5–90 for Hβ, [OIII]0.4959,0.5007 μm, Hα and HeI1.083 μm emission lines of the currently highest spectroscopically confirmed EoR (lensed) source MACS1149-JD1 at a redshift of 9.11, independent of metallicity. In addition, deep 40 ksec simulated spectra of the luminous merger candidate B14-65666 at 7.15 shows the MRS capabilities of detecting, or putting strong upper limits on, the weak [NII]0.6584 μm, [SII]0.6717,0.6731 μm, and [SIII]0.9069,0.9532 μm emission lines. These observations will provide the opportunity of deriving accurate metallicities in bright EoR sources using the full range of rest-frame optical emission lines up to 1 μm. In summary, MRS will enable the detailed study of key physical properties such as internal extinction, instantaneous star formation, hardness of the ionizing continuum, and metallicity in bright (intrinsic or lensed) EoR sources.


2020 ◽  
Vol 497 (2) ◽  
pp. 2066-2077 ◽  
Author(s):  
S Fernandes ◽  
V M Patiño-Álvarez ◽  
V Chavushyan ◽  
E M Schlegel ◽  
J R Valdés

ABSTRACT We present multiwavelength light curves and polarimetric data of the Flat Spectrum Radio Quasar 3C 273 over 8 yr. The wavelength range of our data set extends from radio to gamma-rays. We found that the optical emission in this source is dominated by the accretion disc during the entire time-frame of study. We additionally find that in contrast with the observed behaviour in other blazars, 3C 273 does not show a correlation between the gamma-ray spectral index and the gamma-ray luminosity. Finally, we identified an anticorrelation between the 15 GHz and V-band light curves for the time-range JD245 = 4860–5760, which we speculate is the consequence of the inner part of the accretion disc falling into the black hole, followed by the ejection of a component into the jet.


2008 ◽  
Vol 4 (S255) ◽  
pp. 162-166 ◽  
Author(s):  
Emily M. Levesque ◽  
Lisa J. Kewley ◽  
Kirsten Larson ◽  
Leonie Snijders

AbstractRecent research has suggested that long-duration gamma-ray bursts (LGRBs) occur preferentially in low-metallicity environments, but the exact nature of this correlation is currently a matter of intense debate. We use the newest generation of the Starburst99/Mappings code to generate an extensive suite of cutting-edge stellar population synthesis models, covering a wide range of physical parameters specifically tailored for modeling the ISM environments of metal-poor galaxies and LGRB host galaxies. With our models, we generate optical emission line diagnostics, which will allow us to examine the ISM properties and stellar populations of a variety of galaxy populations in unprecedented detail. While accurately modeling low-metallicity galaxies still poses a challenge to these models, future improvements to these grids will have profound consequences for our understanding of metal-poor galaxies, their ISM environments, and the nature of their role as the hosts of LGRBs.


2020 ◽  
Vol 16 ◽  
Author(s):  
Diogo L. R. Novo ◽  
Priscila T. Scaglioni ◽  
Rodrigo M. Pereira ◽  
Filipe S. Rondan ◽  
Gilberto S. Coelho Junior ◽  
...  

Background: Conventional analytical methods for phosphorus and sulfur determination in several matrices present normally analytical challenges regarding inaccuracy, detectability and waste generation. Objective: The main objective is proposing a green and feasible analytical method for phosphorus and sulfur determination in animal feed. Methods: Synergic effect between microwave and ultraviolet radiations during sample preparation was evaluated for the first time for the animal feed digestion associated with further phosphorus and sulfur determination by ion chromatography with conductivity detection. Dissolved carbon and residual acidity in final digests were used for the proposed method assessment. Phosphorus and sulfur values were compared with those obtained using conventional microwave-assisted wet digestion in closed vessels associated with inductively coupled plasma optical emission spectrometry and with those obtained using Association of Official Analytical Chemists International official method. Recovery tests and certified reference material analysis were performed. Animal feeds were analyzed using the proposed method. Results: Sample masses of 500 mg were efficiently digested using only 2 mol L -1 HNO3. The results obtained by the proposed method was not differing significantly (p > 0.05) from those obtained by the conventional and official methods. Suitable recoveries (from 94 to 99%), agreement with certified values (101 and 104%) and relative standard deviations (< 8%) were achieved. Phosphorus and sulfur content in commercial products varied in a wide range (P: 5,873 to 28,387 mg kg-1 and S: 2,165 to 4,501 mg kg-1 ). Conclusion: The proposed method is a green, safe, accurate, precise and sensitive alternative for animal feed quality control.


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1033
Author(s):  
Jianfeng Li ◽  
Yi Long ◽  
Qichao Zhao ◽  
Shupei Zheng ◽  
Zaijin Fang ◽  
...  

Transparent glass-ceramic composites embedded with Ln-fluoride nanocrystals are prepared in this work to enhance the upconversion luminescence of Tm3+. The crystalline phases, microstructures, and photoluminescence properties of samples are carefully investigated. KYb3F10 nanocrystals are proved to controllably precipitate in the glass-ceramics via the inducing of Yb3+ when the doping concentration varies from 0.5 to 1.5 mol%. Pure near-infrared upconversion emissions are observed and the emission intensities are enhanced in the glass-ceramics as compared to in the precursor glass due to the incorporation of Tm3+ into the KYb3F10 crystal structures via substitutions for Yb3+. Furthermore, KYb2F7 crystals are also nano-crystallized in the glass-ceramics when the Yb3+ concentration exceeds 2.0 mol%. The upconversion emission intensity of Tm3+ is further enhanced by seven times as Tm3+ enters the lattice sites of pure KYb2F7 nanocrystals. The designed glass ceramics provide efficient gain materials for optical applications in the biological transmission window. Moreover, the controllable nano-crystallization strategy induced by Yb3+ opens a new way for engineering a wide range of functional nanomaterials with effective incorporation of Ln3+ ions into fluoride crystal structures.


1977 ◽  
Vol 24 (1) ◽  
pp. 673-677 ◽  
Author(s):  
J. J. Lipsett ◽  
I. L. Fowler ◽  
R. J. Dinger ◽  
H. L. Malm

2021 ◽  
Vol 503 (4) ◽  
pp. 5274-5290
Author(s):  
A K Sen ◽  
V B Il’in ◽  
M S Prokopjeva ◽  
R Gupta

ABSTRACT We present the results of our BVR-band photometric and R-band polarimetric observations of ∼40 stars in the periphery of the dark cloud CB54. From different photometric data, we estimate E(B − V) and E(J − H). After involving data from other sources, we discuss the extinction variations towards CB54. We reveal two main dust layers: a foreground, E(B − V) ≈ 0.1 mag, at ∼200 pc and an extended layer, $E(B-V) \gtrsim 0.3$ mag, at ∼1.5 kpc. CB54 belongs to the latter. Based on these results, we consider the reason for the random polarization map that we have observed for CB54. We find that the foreground is characterized by low polarization ($P \lesssim 0.5$ per cent) and a magnetic field parallel to the Galactic plane. The extended layer shows high polarization (P up to 5–7 per cent). We suggest that the field in this layer is nearly perpendicular to the Galactic plane and both layers are essentially inhomogeneous. This allows us to explain the randomness of polarization vectors around CB54 generally. The data – primarily observed by us in this work for CB54, by A. K. Sen and colleagues in previous works for three dark clouds CB3, CB25 and CB39, and by other authors for a region including the B1 cloud – are analysed to explore any correlation between polarization, the near-infrared, E(J − H), and optical, E(B − V), excesses, and the distance to the background stars. If polarization and extinction are caused by the same set of dust particles, we should expect good correlations. However, we find that, for all the clouds, the correlations are not strong.


Sign in / Sign up

Export Citation Format

Share Document