The Role of DNA Polymerase ζ in Benzo[a]pyrene-induced Mutagenesis in the Mouse Lung

Mutagenesis ◽  
2021 ◽  
Author(s):  
Yuji Ishii ◽  
Shinji Takasu ◽  
Petr Grúz ◽  
Kenichi Masumura ◽  
Kumiko Ogawa ◽  
...  

Abstract DNA polymerase zeta (Polζ) is a heterotetramer composed of the catalytic subunit Rev3l, Rev7 and two subunits of Polδ (PolD2/Pol31 and PolD3/Pol32), and this polymerase exerts translesion DNA synthesis (TLS) in yeast. Because Rev3l knockout results in embryonic lethality in mice, the functions of Polζ need further investigation in vivo. Then, we noted the two facts that substitution of leucine 979 of yeast Rev3l with methionine reduces Polζ replication fidelity and that reporter gene transgenic rodents are able to provide the detailed mutation status. Here, we established gpt delta mouse knocked in the constructed gene encoding methionine instead of leucine at residue 2610 of Rev3l (Rev3l L2610M gpt delta mice), to clarify the role of Polζ in TLS of chemical-induced bulky DNA adducts in vivo. Eight-week-old gpt delta mice and Rev3l L2610M gpt delta mice were treated with benzo[a]pyrene (BaP) at 0, 40, 80, or 160 mg/kg via single intraperitoneal injection. At necropsy 31 days after treatment, lungs were collected for reporter gene mutation assays. Although the gpt mutant frequency (MF) was significantly increased by BaP in both mouse genotypes, it was three times higher in Rev3l L2610M gpt delta than gpt delta mice after treatment with 160 mg/kg BaP. The frequencies of G:C base substitutions and characteristic complex mutations were significantly increased in Rev3l L2610M gpt delta mice compared with gpt delta mice. The BaP dose–response relationship suggested that Polζ plays a central role in TLS when protective mechanisms against BaP mutagenesis, such as error-free TLS, are saturated. Overall, Polζ may incorporate incorrect nucleotides at the sites opposite to BaP-modified guanines and extend short DNA sequences from the resultant terminal mismatches only when DNA is heavily damaged.

2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


2004 ◽  
Vol 186 (17) ◽  
pp. 5876-5882 ◽  
Author(s):  
Andrea K. White ◽  
William W. Metcalf

ABSTRACT The htx and ptx operons of Pseudomonas stutzeri WM88 allow for the use of the inorganic reduced phosphorus (P) compounds hypophosphite (P valence, +1) and phosphite (P valence, +3) as sole P sources. To support the proposed in vivo role for the htx and ptx operons, namely the use of phosphite and hypophosphite as alternative P sources, we used reporter gene fusions to examine their expression levels with respect to various P conditions. Expression of the htx and ptx operons was induced up to 17- and 22-fold, respectively, in cultures grown under phosphate starvation conditions relative to expression in medium with excess phosphate (Pi). However, the presence of the reduced P substrate hypophosphite, phosphite, or methylphosphonate, in addition to excess Pi, did not result in an increase in the expression of either operon. To provide further support for a role of the htx and ptx operons in Pi acquisition, we identified P. stutzeri phoBR homologs and constructed deletion mutants. Induction of the htx and ptx reporter gene fusions in response to growth on limiting Pi was abolished in ΔphoB, ΔphoR, and ΔphoBR mutants, demonstrating that htx and ptx expression is phoBR dependent. The putative LysR-type regulator encoded by ptxE has no apparent role in the expression of the htx and ptx operons, as no effect was observed on the level of induction of either operon in a ΔptxE mutant.


2004 ◽  
Vol 24 (16) ◽  
pp. 6900-6906 ◽  
Author(s):  
M. Todd Washington ◽  
Irina G. Minko ◽  
Robert E. Johnson ◽  
Lajos Haracska ◽  
Thomas M. Harris ◽  
...  

ABSTRACT Rev1, a member of the Y family of DNA polymerases, functions in lesion bypass together with DNA polymerase ζ (Polζ). Rev1 is a highly specialized enzyme in that it incorporates only a C opposite template G. While Rev1 plays an indispensable structural role in Polζ-dependent lesion bypass, the role of its DNA synthetic activity in lesion bypass has remained unclear. Since interactions of DNA polymerases with the DNA minor groove contribute to the nearly equivalent efficiencies and fidelities of nucleotide incorporation opposite each of the four template bases, here we examine the possibility that unlike other DNA polymerases, Rev1 does not come into close contact with the minor groove of the incipient base pair, and that enables it to incorporate a C opposite the N 2-adducted guanines in DNA. To test this idea, we examined whether Rev1 could incorporate a C opposite the γ-hydroxy-1,N 2-propano-2′deoxyguanosine DNA minor-groove adduct, which is formed from the reaction of acrolein with the N 2 of guanine. Acrolein, an α,β-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from other oxidation reactions. We show here that Rev1 efficiently incorporates a C opposite this adduct from which Polζ subsequently extends, thereby completing the lesion bypass reaction. Based upon these observations, we suggest that an important role of the Rev1 DNA synthetic activity in lesion bypass is to incorporate a C opposite the various N 2-guanine DNA minor-groove adducts that form in DNA.


2000 ◽  
Vol 20 (20) ◽  
pp. 7490-7504 ◽  
Author(s):  
Robert J. Kokoska ◽  
Lela Stefanovic ◽  
Jeremy DeMai ◽  
Thomas D. Petes

ABSTRACT In Saccharomyces cerevisiae, POL3 encodes the catalytic subunit of DNA polymerase δ. While yeastPOL3 mutant strains that lack the proofreading exonuclease activity of the polymerase have a strong mutator phenotype, little is known regarding the role of other Pol3p domains in mutation avoidance. We identified a number of pol3 mutations in regions outside of the exonuclease domain that have a mutator phenotype, substantially elevating the frequency of deletions. These deletions appear to reflect an increased frequency of DNA polymerase slippage. In addition, we demonstrate that reduction in the level of wild-type DNA polymerase results in a similar mutator phenotype. Lowered levels of DNA polymerase also result in increased sensitivity to the DNA-damaging agent methyl methane sulfonate. We conclude that both the quantity and the quality of DNA polymerase δ is important in ensuring genome stability.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3183-3191 ◽  
Author(s):  
Catherine Léon ◽  
Anita Eckly ◽  
Béatrice Hechler ◽  
Boris Aleil ◽  
Monique Freund ◽  
...  

Abstract Mutations in the MYH9 gene encoding the nonmuscle myosin heavy chain IIA result in bleeding disorders characterized by a macrothrombocytopenia. To understand the role of myosin in normal platelet functions and in pathology, we generated mice with disruption of MYH9 in megakaryocytes. MYH9Δ mice displayed macrothrombocytopenia with a strong increase in bleeding time and absence of clot retraction. However, platelet aggregation and secretion in response to any agonist were near normal despite absence of initial platelet contraction. By contrast, integrin outside-in signaling was impaired, as observed by a decrease in integrin β3 phosphorylation and PtdIns(3,4)P2 accumulation following stimulation. Upon adhesion on a fibrinogen-coated surface, MYH9Δ platelets were still able to extend lamellipodia but without stress fiber–like formation. As a consequence, thrombus growth and organization, investigated under flow by perfusing whole blood over collagen, were strongly impaired. Thrombus stability was also decreased in vivo in a model of FeCl3-induced injury of carotid arteries. Overall, these results demonstrate that while myosin seems dispensable for aggregation and secretion in suspension, it plays a key role in platelet contractile phenomena and outside-in signaling. These roles of myosin in platelet functions, in addition to thrombocytopenia, account for the strong hemostatic defects observed in MYH9Δ mice.


2007 ◽  
Vol 189 (17) ◽  
pp. 6359-6371 ◽  
Author(s):  
Dafna Tamir-Ariel ◽  
Naama Navon ◽  
Saul Burdman

ABSTRACT Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease of tomato and pepper. The disease process is interactive and very intricate and involves a plethora of genes in the pathogen and in the host. In the pathogen, different genes are activated in response to the changing environment to enable it to survive, adapt, evade host defenses, propagate, and damage the host. To understand the disease process, it is imperative to broaden our understanding of the gene machinery that participates in it, and the most reliable way is to identify these genes in vivo. Here, we have adapted a recombinase-based in vivo expression technology (RIVET) to study the genes activated in X. campestris pv. vesicatoria during its interaction with one of its hosts, tomato. This is the first study that demonstrates the feasibility of this approach for identifying in vivo induced genes in a plant pathogen. RIVET revealed 61 unique X. campestris pv. vesicatoria genes or operons that delineate a picture of the different processes involved in the pathogen-host interaction. To further explore the role of some of these genes, we generated knockout mutants for 13 genes and characterized their ability to grow in planta and to cause disease symptoms. This analysis revealed several genes that may be important for the interaction of the pathogen with its host, including a citH homologue gene, encoding a citrate transporter, which was shown to be required for wild-type levels of virulence.


2007 ◽  
Vol 75 (4) ◽  
pp. 1609-1618 ◽  
Author(s):  
Dhammika H. M. L. P. Navarathna ◽  
Jacob M. Hornby ◽  
Navasona Krishnan ◽  
Anne Parkhurst ◽  
Gerald E. Duhamel ◽  
...  

ABSTRACTThis work extends our previous observation that the fungusCandida albicanssecretes micromolar levels of farnesol and that accumulation of farnesol in vitro prevents the yeast-to-mycelium conversion in a quorum-sensing manner. What does farnesol do in vivo? The purpose of this study was to determine the role of farnesol during infection with a well-established mouse model of systemic candidiasis withC. albicansA72 administered by tail vein injection. This question was addressed by altering both endogenous and exogenous farnesol. For endogenous farnesol, we created a knockout mutation inDPP3, the gene encoding a phosphatase which converts farnesyl pyrophosphate to farnesol. This mutant (KWN2) produced six times less farnesol and was ca. 4.2 times less pathogenic than its SN152 parent. The strain withDPP3reconstituted (KWN4) regained both its farnesol production levels and pathogenicity. These mutants (KWN1 to KWN4) retained their full dimorphic capability. With regard to exogenous farnesol, farnesol was administered either intraperitoneally (i.p.) or orally in the drinking water. Mice receivingC. albicansintravenously and farnesol (20 mM) orally had enhanced mortality (P< 0.03). Similarly, mice (n= 40) injected with 1.0 ml of 20 mM farnesol i.p. had enhanced mortality (P< 0.03), and the onset of mortality was 30 h sooner than for mice which received a control injection without farnesol. The effect of i.p. farnesol was more pronounced (P< 0.04) when mice were inoculated with a sublethal dose ofC. albicans. These mice started to die 4 days earlier, and the percent survival on day 6 postinoculation (p.i.) was five times lower than for mice receivingC. albicanswith control i.p. injections. In all experiments, mice administered farnesol alone or Tween 80 alone remained normal throughout a 14-day observation period. Finally, beginning at 12 h p.i., higher numbers ofC. albicanscells were detected in kidneys from mice receiving i.p. farnesol than in those from mice receiving control i.p. injections. Thus, reduced endogenous farnesol decreased virulence, while providing exogenous farnesol increased virulence. Taken together, these data suggest that farnesol may play a role in disease pathogenesis, either directly or indirectly, and thus may represent a newly identified virulence factor.


Sign in / Sign up

Export Citation Format

Share Document