scholarly journals Protamine loops DNA in multiple steps

2020 ◽  
Vol 48 (11) ◽  
pp. 6108-6119
Author(s):  
Obinna A Ukogu ◽  
Adam D Smith ◽  
Luka M Devenica ◽  
Hilary Bediako ◽  
Ryan B McMillan ◽  
...  

Abstract Protamine proteins dramatically condense DNA in sperm to almost crystalline packing levels. Here, we measure the first step in the in vitro pathway, the folding of DNA into a single loop. Current models for DNA loop formation are one-step, all-or-nothing models with a looped state and an unlooped state. However, when we use a Tethered Particle Motion (TPM) assay to measure the dynamic, real-time looping of DNA by protamine, we observe the presence of multiple folded states that are long-lived (∼100 s) and reversible. In addition, we measure folding on DNA molecules that are too short to form loops. This suggests that protamine is using a multi-step process to loop the DNA rather than a one-step process. To visualize the DNA structures, we used an Atomic Force Microscopy (AFM) assay. We see that some folded DNA molecules are loops with a ∼10-nm radius and some of the folded molecules are partial loops—c-shapes or s-shapes—that have a radius of curvature of ∼10 nm. Further analysis of these structures suggest that protamine is bending the DNA to achieve this curvature rather than increasing the flexibility of the DNA. We therefore conclude that protamine loops DNA in multiple steps, bending it into a loop.

2007 ◽  
Vol 18 (9) ◽  
pp. 3225-3236 ◽  
Author(s):  
Brett A. Kaufman ◽  
Nela Durisic ◽  
Jeffrey M. Mativetsky ◽  
Santiago Costantino ◽  
Mark A. Hancock ◽  
...  

Packaging DNA into condensed structures is integral to the transmission of genomes. The mammalian mitochondrial genome (mtDNA) is a high copy, maternally inherited genome in which mutations cause a variety of multisystem disorders. In all eukaryotic cells, multiple mtDNAs are packaged with protein into spheroid bodies called nucleoids, which are the fundamental units of mtDNA segregation. The mechanism of nucleoid formation, however, remains unknown. Here, we show that the mitochondrial transcription factor TFAM, an abundant and highly conserved High Mobility Group box protein, binds DNA cooperatively with nanomolar affinity as a homodimer and that it is capable of coordinating and fully compacting several DNA molecules together to form spheroid structures. We use noncontact atomic force microscopy, which achieves near cryo-electron microscope resolution, to reveal the structural details of protein–DNA compaction intermediates. The formation of these complexes involves the bending of the DNA backbone, and DNA loop formation, followed by the filling in of proximal available DNA sites until the DNA is compacted. These results indicate that TFAM alone is sufficient to organize mitochondrial chromatin and provide a mechanism for nucleoid formation.


2021 ◽  
Author(s):  
Kazuto Yoshimi ◽  
Kohei TAKESHITA ◽  
Noriyuki Kodera ◽  
Satomi Shibumura ◽  
Yuko Yamauchi ◽  
...  

Type I CRISPR-Cas3 uses an RNA-guided multi Cas-protein complex, Cascade, which detects and degrades foreign nucleic acids via the helicase-nuclease Cas3 protein. Despite many studies using cryoEM and smFRET, the precise mechanism of Cas3-mediated cleavage and degradation of target DNA remains elusive. Here we reconstitute the CRISPR-Cas3 system in vitro to show how the Escherichia coli Cas3 (EcoCas3) with EcoCascade exhibits collateral non-specific ssDNA cleavage and target specific DNA degradation. Partial binding of EcoCascade to target DNA with tolerated mismatches within the spacer sequence, but not the PAM, elicits collateral ssDNA cleavage activity of recruited EcoCas3. Conversely, stable binding with complete R-loop formation drives EcoCas3 to nick the non-target strand (NTS) in the bound DNA. Helicase-dependent unwinding then combines with trans ssDNA cleavage of the target strand and repetitive cis cleavage of the NTS to degrade the target dsDNA substrate. High-speed atomic force microscopy demonstrates that EcoCas3 bound to EcoCascade repeatedly reels and releases the target DNA, followed by target fragmentation. Together, these results provide a revised model for collateral ssDNA cleavage and target dsDNA degradation by CRISPR-Cas3, furthering understanding of type I CRISPR priming and interference and informing future genome editing tools.


2010 ◽  
Vol 123-125 ◽  
pp. 743-746 ◽  
Author(s):  
Peng Li ◽  
Seon Hyeong Bae ◽  
Qing Yuan Zan ◽  
Nam Hoon Kim ◽  
Joong Hee Lee

SDBS modified graphene was prepared by electrochemical method using Sodium dodecylbenzenesulfonate (SDBS) as electrolyte and graphite rod as electrode. The anode graphite rod was corroded and deposited at the bottom of the electrolyte solution. The obtained graphene was characterized by Atomic force microscopy (AFM), Raman and Fourier transform infrared spectra (FT-IR). AFM images indicated that most of the layers had the thickness of less than 2 nm, suggesting the fromation of single layer of graphene. The resulting graphene showed very good dispersion stability both in water and in organic solvents (ethanol, acetone).


2021 ◽  
Author(s):  
Ryan B. McMillan ◽  
Victoria D. Kuntz ◽  
Luka M. Devenica ◽  
Hilary Bediako ◽  
Ashley R. Carter

ABSTRACTDNA looping plays an important role in cells in both regulating and protecting the genome. Often, studies of looping focus on looping by prokaryotic transcription factors like lac repressor or by structural maintenance of chromosomes (SMC) proteins such as condensin. Here, however, we are interested in a different looping method whereby multivalent cations (charge≥+3), such as protamine proteins, neutralize the DNA, causing it to form loops and toroids. We considered two previously proposed mechanisms for DNA looping by protamine. In the first mechanism, protamine stabilizes spontaneous DNA fluctuations, forming randomly distributed loops along the DNA. In the second mechanism, protamine binds and bends the DNA to form a loop, creating a distribution of loops that is biased by protamine binding. To differentiate between these mechanisms, we imaged both spontaneous and protamine-induced loops on short-length (≤ 1 μm) DNA fragments using atomic force microscopy (AFM). We then compared the spatial distribution of the loops to several model distributions. A random looping model, which describes the mechanism of spontaneous DNA folding, fit the distribution of spontaneous loops, but it did not fit the distribution of protamine-induced loops. Specifically, it overestimated the number of loops that form at the ends of the molecule and failed to predict a peak in the spatial distribution of loops at an intermediate location along the DNA. An electrostatic multibinding model, which was created to mimic the bind-and-bend mechanism of protamine, was a better fit of the distribution of protamine-induced loops. In this model, multiple protamines bind to the DNA electrostatically within a particular region along the DNA to coordinate the formation of a loop. We speculate that these findings will impact our understanding of protamine’s in vivo role for looping DNA into toroids and the mechanism of DNA condensation by multivalent cations more broadly.SIGNIFICANCEDNA looping is important in a variety of both in vivo functions (e.g. gene regulation) and in vitro applications (e.g. DNA origami). Here, we sought a mechanistic understanding of DNA looping by multivalent cations (≥+3), which condense DNA into loops and toroids. One such multivalent cation is the protein protamine, which condenses DNA in sperm. We investigated the mechanism for loop formation by protamine and found that the experimental data was consistent with an electrostatic multibinding model in which two protamines bind electrostatically to the DNA within a 50-nm region to form a loop. This model is likely general to all multivalent cations and may be helpful in applications involving toroid formation or DNA nanoengineering.


2019 ◽  
Vol 2 (2) ◽  
pp. 48 ◽  
Author(s):  
Priya Prakash ◽  
Travis C. Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease patients primarily consists of amyloid beta 1-42 (Aβ42). Commercially, Aβ42 is synthesized using high-throughput peptide synthesizers resulting in the presence of impurities and the racemization of amino acids that affects its aggregation properties. Furthermore, the repeated purchase of even a small quantity (~1 mg) of commercial Aβ42 can be expensive for academic researchers. Here, we describe a detailed methodology for robust expression of recombinant human Aβ(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli using standard molecular biology techniques with refined and rapid one-step analytical purification techniques. The peptide is isolated and purified from transformed cells using an optimized reverse-phase high-performance liquid chromatography (HPLC) protocol with commonly available C18 columns, yielding high amounts of peptide (~15–20 mg per 1 L culture) within a short period of time. The recombinant human Aβ(M1-42) forms characteristic aggregates similar to synthetic Aβ42 aggregates as verified by western blotting and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique produces pure recombinant human Aβ(M1-42) that may be used to synthesize chemical probes and in several downstream in vitro and in vivo assays to facilitate Alzheimer’s disease research.


2021 ◽  
Author(s):  
Yue Lu ◽  
Gustavo Borjas ◽  
Zsuzsanna Voros ◽  
Christine Hendrickson ◽  
Keith E Shearwin ◽  
...  

Many DNA-binding proteins induce topological structures such as loops or wraps through binding to two or more sites along the DNA. Such topologies may regulate transcription initiation and may also be roadblocks for elongating RNA polymerase (RNAP). Remarkably, a lac repressor protein bound to a weak binding site (O2) does not obstruct RNAP in vitro but becomes an effective roadblock when securing a loop of 400 bp between two widely separated binding sites. To investigate whether topological structures mediated by proteins bound to closely spaced binding sites and interacting cooperatively also represent roadblocks, we compared the effect of the lambda CI and 186 CI repressors on RNAP elongation. Dimers of lambda CI can bind to two sets of adjacent sites separated by hundreds of bp and form a DNA loop via the interaction between their C-terminal domains. The 186 CI protein can form a wheel of seven dimers around which specific DNA binding sequences can wrap. Atomic force microscopy (AFM) was used to image transcription elongation complexes of DNA templates that contained binding sites for either the lambda or 186 CI repressor. While RNAP elongated past lambda CI on unlooped DNA, as well as past 186 CI-wrapped DNA, it did not pass the lambda CI-mediated loop. These results may indicate that protein-mediated loops with widely separated binding sites more effectively block transcription than a wrapped topology with multiple, closely spaced binding sites.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


2020 ◽  
Vol 20 (15) ◽  
pp. 1857-1872
Author(s):  
Alberto M. Muñoz ◽  
Manuel J. Fragoso-Vázquez ◽  
Berenice P. Martel ◽  
Alma Chávez-Blanco ◽  
Alfonso Dueñas-González ◽  
...  

Background: Our research group has developed some Valproic Acid (VPA) derivatives employed as anti-proliferative compounds targeting the HDAC8 enzyme. However, some of these compounds are poorly soluble in water. Objective: Employed the four generations of Polyamidoamine (G4 PAMAM) dendrimers as drug carriers of these compounds to increase their water solubility for further in vitro evaluation. Methods: VPA derivatives were subjected to Docking and Molecular Dynamics (MD) simulations to evaluate their affinity on G4 PAMAM. Then, HPLC-UV/VIS, 1H NMR, MALDI-TOF and atomic force microscopy were employed to establish the formation of the drug-G4 PAMAM complexes. Results: The docking results showed that the amide groups of VPA derivatives make polar interactions with G4 PAMAM, whereas MD simulations corroborated the stability of the complexes. HPLC UV/VIS experiments showed an increase in the drug water solubility which was found to be directly proportional to the amount of G4 PAMAM. 1H NMR showed a disappearance of the proton amine group signals, correlating with docking results. MALDI-TOF and atomic force microscopy suggested the drug-G4 PAMAM dendrimer complexes formation. Discussion: In vitro studies showed that G4 PAMAM has toxicity in the micromolar concentration in MDAMB- 231, MCF7, and 3T3-L1 cell lines. VPA CF-G4 PAMAM dendrimer complex showed anti-proliferative properties in the micromolar concentration in MCF-7 and 3T3-L1, and in the milimolar concentration in MDAMB- 231, whereas VPA MF-G4 PAMAM dendrimer complex didn’t show effects on the three cell lines employed. Conclusion: These results demonstrate that G4 PAMAM dendrimers are capableof transporting poorly watersoluble aryl-VPA derivate compounds to increase its cytotoxic activity against neoplastic cell lines.


FEBS Letters ◽  
1992 ◽  
Vol 301 (2) ◽  
pp. 173-176 ◽  
Author(s):  
Jie Yang ◽  
Kunio Takeyasu ◽  
Zhifeng Shao

Sign in / Sign up

Export Citation Format

Share Document