scholarly journals Primary transcriptome and translatome analysis determines transcriptional and translational regulatory elements encoded in the Streptomyces clavuligerus genome

2019 ◽  
Vol 47 (12) ◽  
pp. 6114-6129 ◽  
Author(s):  
Soonkyu Hwang ◽  
Namil Lee ◽  
Yujin Jeong ◽  
Yongjae Lee ◽  
Woori Kim ◽  
...  

AbstractDetermining transcriptional and translational regulatory elements in GC-rich Streptomyces genomes is essential to elucidating the complex regulatory networks that govern secondary metabolite biosynthetic gene cluster (BGC) expression. However, information about such regulatory elements has been limited for Streptomyces genomes. To address this limitation, a high-quality genome sequence of β-lactam antibiotic-producing Streptomyces clavuligerus ATCC 27 064 is completed, which contains 7163 newly annotated genes. This provides a fundamental reference genome sequence to integrate multiple genome-scale data types, including dRNA-Seq, RNA-Seq and ribosome profiling. Data integration results in the precise determination of 2659 transcription start sites which reveal transcriptional and translational regulatory elements, including −10 and −35 promoter components specific to sigma (σ) factors, and 5′-untranslated region as a determinant for translation efficiency regulation. Particularly, sequence analysis of a wide diversity of the −35 components enables us to predict potential σ-factor regulons, along with various spacer lengths between the −10 and −35 elements. At last, the primary transcriptome landscape of the β-lactam biosynthetic pathway is analyzed, suggesting temporal changes in metabolism for the synthesis of secondary metabolites driven by transcriptional regulation. This comprehensive genetic information provides a versatile genetic resource for rational engineering of secondary metabolite BGCs in Streptomyces.

mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Soonkyu Hwang ◽  
Namil Lee ◽  
Donghui Choe ◽  
Yongjae Lee ◽  
Woori Kim ◽  
...  

ABSTRACT Identification of transcriptional regulatory elements in the GC-rich Streptomyces genome is essential for the production of novel biochemicals from secondary metabolite biosynthetic gene clusters (smBGCs). Despite many efforts to understand the regulation of transcription initiation in smBGCs, information on the regulation of transcription termination and posttranscriptional processing remains scarce. In this study, we identified the transcriptional regulatory elements in β-lactam antibiotic-producing Streptomyces clavuligerus ATCC 27064 by determining a total of 1,427 transcript 3′-end positions (TEPs) using the term-seq method. Termination of transcription was governed by three classes of TEPs, of which each displayed unique sequence features. The data integration with transcription start sites and transcriptome data generated 1,648 transcription units (TUs) and 610 transcription unit clusters (TUCs). TU architecture showed that the transcript abundance in TU isoforms of a TUC was potentially affected by the sequence context of their TEPs, suggesting that the regulatory elements of TEPs could control the transcription level in additional layers. We also identified TU features of a xenobiotic response element (XRE) family regulator and DUF397 domain-containing protein, particularly showing the abundance of bidirectional TEPs. Finally, we found that 189 noncoding TUs contained potential cis- and trans-regulatory elements that played a major role in regulating the 5′ and 3′ UTR. These findings highlight the role of transcriptional regulatory elements in transcription termination and posttranscriptional processing in Streptomyces sp. IMPORTANCE Streptomyces sp. is a great source of bioactive secondary metabolites, including antibiotics, antifungal agents, antiparasitic agents, immunosuppressant compounds, and other drugs. Secondary metabolites are synthesized via multistep conversions of the precursor molecules from primary metabolism, governed by multicomplex enzymes from secondary metabolite biosynthetic gene clusters. As their production is closely related with the growth phase and dynamic cellular status in response to various intra- and extracellular signals, complex regulatory systems tightly control the gene expressions related to secondary metabolism. In this study, we determined genome-wide transcript 3′-end positions and transcription units in the β-lactam antibiotic producer Streptomyces clavuligerus ATCC 27064 to elucidate the transcriptional regulatory elements in transcription termination and posttranscriptional processing by integration of multiomics data. These unique features, such as transcript 3′-end sequence, potential riboregulators, and potential 3′-untranslated region (UTR) cis-regulatory elements, can be potentially used to design engineering tools that can regulate the transcript abundance of genes for enhancing secondary metabolite production.


Author(s):  
Hsin-Yen Larry Wu ◽  
Polly Yingshan Hsu

ABSTRACTUpstream ORFs (uORFs) are widespread cis-regulatory elements in the 5’ untranslated regions of eukaryotic genes. Translation of uORFs could negatively regulate protein synthesis by repressing main ORF (mORF) translation and by reducing mRNA stability presumably through nonsense-mediated decay (NMD). While the above expectations were supported in animals, they have not been extensively tested in plants. Using ribosome profiling, we systematically identified 2093 Actively Translated uORFs (ATuORFs) in Arabidopsis seedlings and examined their roles in gene expression regulation by integrating multiple genome-wide datasets. Compared with genes without uORFs, we found ATuORFs result in 38%, 14%, and 43% reductions in translation efficiency, mRNA stability, and protein levels, respectively. The effects of predicted but not actively translated uORFs are much weaker than those of ATuORFs. Interestingly, ATuORF-containing genes are also expressed at higher levels and encode longer proteins with conserved domains, features that are common in evolutionarily older genes. Moreover, we provide evidence that uORF translation in plants, unlike in vertebrates, generally does not trigger NMD. We found ATuORF-containing transcripts are degraded through 5’ to 3’ decay, while NMD targets are degraded through both 5’ to 3’ and 3’ to 5’ decay, suggesting uORF-associated mRNA decay and NMD have distinct genetic requirements. Furthermore, we showed ATuORFs and NMD repress translation through separate mechanisms. Our results reveal that the potent inhibition of uORFs on mORF translation and mRNA stability in plants are independent of NMD, highlighting a fundamental difference in gene expression regulation by uORFs in the plant and animal kingdoms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julian Droste ◽  
Christian Rückert ◽  
Jörn Kalinowski ◽  
Mohamed Belal Hamed ◽  
Jozef Anné ◽  
...  

Streptomyces lividans TK24 is a relevant Gram-positive soil inhabiting bacterium and one of the model organisms of the genus Streptomyces. It is known for its potential to produce secondary metabolites, antibiotics, and other industrially relevant products. S. lividans TK24 is the plasmid-free derivative of S. lividans 66 and a close genetic relative of the strain Streptomyces coelicolor A3(2). In this study, we used transcriptome and proteome data to improve the annotation of the S. lividans TK24 genome. The RNA-seq data of primary 5′-ends of transcripts were used to determine transcription start sites (TSS) in the genome. We identified 5,424 TSS, of which 4,664 were assigned to annotated CDS and ncRNAs, 687 to antisense transcripts distributed between 606 CDS and their UTRs, 67 to tRNAs, and 108 to novel transcripts and CDS. Using the TSS data, the promoter regions and their motifs were analyzed in detail, revealing a conserved -10 (TAnnnT) and a weakly conserved -35 region (nTGACn). The analysis of the 5′ untranslated region (UTRs) of S. lividans TK24 revealed 17% leaderless transcripts. Several cis-regulatory elements, like riboswitches or attenuator structures could be detected in the 5′-UTRs. The S. lividans TK24 transcriptome contains at least 929 operons. The genome harbors 27 secondary metabolite gene clusters of which 26 could be shown to be transcribed under at least one of the applied conditions. Comparison of the reannotated genome with that of the strain Streptomyces coelicolor A3(2) revealed a high degree of similarity. This study presents an extensive reannotation of the S. lividans TK24 genome based on transcriptome and proteome analyses. The analysis of TSS data revealed insights into the promoter structure, 5′-UTRs, cis-regulatory elements, attenuator structures and novel transcripts, like small RNAs. Finally, the repertoire of secondary metabolite gene clusters was examined. These data provide a basis for future studies regarding gene characterization, transcriptional regulatory networks, and usage as a secondary metabolite producing strain.


2021 ◽  
Vol 5 (13) ◽  
pp. 2788-2792
Author(s):  
Stavroula Ntoufa ◽  
Marina Gerousi ◽  
Stamatia Laidou ◽  
Fotis Psomopoulos ◽  
Georgios Tsiolas ◽  
...  

Abstract Recent studies of chronic lymphocytic leukemia (CLL) have reported recurrent mutations in the RPS15 gene, which encodes the ribosomal protein S15 (RPS15), a component of the 40S ribosomal subunit. Despite some evidence about the role of mutant RPS15 (mostly obtained from the analysis of cell lines), the precise impact of RPS15 mutations on the translational program in primary CLL cells remains largely unexplored. Here, using RNA sequencing and ribosome profiling, a technique that involves measuring translational efficiency, we sought to obtain global insight into changes in translation induced by RPS15 mutations in CLL cells. To this end, we evaluated primary CLL cells from patients with wild-type or mutant RPS15 as well as MEC1 CLL cells transfected with mutant or wild-type RPS15. Our data indicate that RPS15 mutations rewire the translation program of primary CLL cells by reducing their translational efficiency, an effect not seen in MEC1 cells. In detail, RPS15 mutant primary CLL cells displayed altered translation efficiency of other ribosomal proteins and regulatory elements that affect key cell processes, such as the translational machinery and immune signaling, as well as genes known to be implicated in CLL, hence highlighting a relevant role for RPS15 in the natural history of CLL.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Hooi-Leng Ser ◽  
Wai-Fong Yin ◽  
Kok-Gan Chan ◽  
Nurul-Syakima Ab Mutalib ◽  
Learn-Han Lee

Novosphingobium malaysiense strain MUSC 273T is a recently identified Gram-negative, aerobic alpha-proteobacterium. The strain was isolated from intertidal soil with strong catalase activity. The genome sequence comprises 5,027,021 bp, with 50 tRNA and 3 rRNA genes. Further analysis identified presence of secondary metabolite gene clusters within genome of MUSC 273T. Knowledge of the genomic features of the strain may allow further biotechnological exploitation, particularly for production of secondary metabolites as well as production of industrially important enzymes


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong Wang ◽  
Aiping Duan ◽  
Jing Zhang ◽  
Qi Wang ◽  
Yuexian Xing ◽  
...  

AbstractElucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.


2021 ◽  
Vol 7 (13) ◽  
pp. eabf3072
Author(s):  
Y. Nagayoshi ◽  
T. Chujo ◽  
S. Hirata ◽  
H. Nakatsuka ◽  
C.-W. Chen ◽  
...  

FtsJ RNA 2′-O-methyltransferase 1 (FTSJ1) gene has been implicated in X-linked intellectual disability (XLID), but the molecular pathogenesis is unknown. We show that Ftsj1 is responsible for 2′-O-methylation of 11 species of cytosolic transfer RNAs (tRNAs) at the anticodon region, and these modifications are abolished in Ftsj1 knockout (KO) mice and XLID patient–derived cells. Loss of 2′-O-methylation in Ftsj1 KO mouse selectively reduced the steady-state level of tRNAPhe in the brain, resulting in a slow decoding at Phe codons. Ribosome profiling showed that translation efficiency is significantly reduced in a subset of genes that need to be efficiently translated to support synaptic organization and functions. Ftsj1 KO mice display immature synaptic morphology and aberrant synaptic plasticity, which are associated with anxiety-like and memory deficits. The data illuminate a fundamental role of tRNA modification in the brain through regulation of translation efficiency and provide mechanistic insights into FTSJ1-related XLID.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 911
Author(s):  
Joana Silva ◽  
Pedro Nina ◽  
Luísa Romão

ATP-binding cassette subfamily E member 1 (ABCE1) belongs to the ABC protein family of transporters; however, it does not behave as a drug transporter. Instead, ABCE1 actively participates in different stages of translation and is also associated with oncogenic functions. Ribosome profiling analysis in colorectal cancer cells has revealed a high ribosome occupancy in the human ABCE1 mRNA 5′-leader sequence, indicating the presence of translatable upstream open reading frames (uORFs). These cis-acting translational regulatory elements usually act as repressors of translation of the main coding sequence. In the present study, we dissect the regulatory function of the five AUG and five non-AUG uORFs identified in the human ABCE1 mRNA 5′-leader sequence. We show that the expression of the main coding sequence is tightly regulated by the ABCE1 AUG uORFs in colorectal cells. Our results are consistent with a model wherein uORF1 is efficiently translated, behaving as a barrier to downstream uORF translation. The few ribosomes that can bypass uORF1 (and/or uORF2) must probably initiate at the inhibitory uORF3 or uORF5 that efficiently repress translation of the main ORF. This inhibitory property is slightly overcome in conditions of endoplasmic reticulum stress. In addition, we observed that these potent translation-inhibitory AUG uORFs function equally in cancer and in non-tumorigenic colorectal cells, which is consistent with a lack of oncogenic function. In conclusion, we establish human ABCE1 as an additional example of uORF-mediated translational regulation and that this tight regulation contributes to control ABCE1 protein levels in different cell environments.


2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


2020 ◽  
Vol 21 (24) ◽  
pp. 9461
Author(s):  
Aurora Savino ◽  
Paolo Provero ◽  
Valeria Poli

Biological systems respond to perturbations through the rewiring of molecular interactions, organised in gene regulatory networks (GRNs). Among these, the increasingly high availability of transcriptomic data makes gene co-expression networks the most exploited ones. Differential co-expression networks are useful tools to identify changes in response to an external perturbation, such as mutations predisposing to cancer development, and leading to changes in the activity of gene expression regulators or signalling. They can help explain the robustness of cancer cells to perturbations and identify promising candidates for targeted therapy, moreover providing higher specificity with respect to standard co-expression methods. Here, we comprehensively review the literature about the methods developed to assess differential co-expression and their applications to cancer biology. Via the comparison of normal and diseased conditions and of different tumour stages, studies based on these methods led to the definition of pathways involved in gene network reorganisation upon oncogenes’ mutations and tumour progression, often converging on immune system signalling. A relevant implementation still lagging behind is the integration of different data types, which would greatly improve network interpretability. Most importantly, performance and predictivity evaluation of the large variety of mathematical models proposed would urgently require experimental validations and systematic comparisons. We believe that future work on differential gene co-expression networks, complemented with additional omics data and experimentally tested, will considerably improve our insights into the biology of tumours.


Sign in / Sign up

Export Citation Format

Share Document