MO066GASDERMIND MUTATION IS PROTECTIVE AGAINST RENAL ISCHEMIA REPERFUSION INJURY

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Natasha Rogers ◽  
Jennifer Li ◽  
Stephen Alexander

Abstract Background and Aims Ischemia reperfusion injury (IRI) is an important contributor to acute kidney injury (AKI) and manifests as delayed graft function following kidney transplantation. Limiting the damage of IRI has implications on graft outcomes and has driven further exploration of the underlying pathophysiology. We hypothesize that pyroptosis, a pro-inflammatory form of cell death, has an important role in IRI and AKI. The pyroptosis pathway converges to the cleavage and release of N-terminal of the Gasdermin-D protein, leading to pore formation in the cell membrane and cell death. We examined the effects of Gasdermin-D mutation on inflammation in acute kidney injury. Method Male C57BL/6 mice were exposed to ethyl-N-nitrosourea mutagenesis, leading to a loss-of-function, single nucleotide polymorphism (isoleucine to asparagine mutation, I105N) in the Gasdermin-D gene. Age- and gender-matched littermate control wild-type, heterozygous and homozygous Gasdermin-DI105N mice were subjected to bilateral renal IRI (36°C, 22mins) and sacrificed 24-hours post-reperfusion for analysis of renal function, histology and biomolecular phenotyping. To delineate if the GasderminD mutation in renal parenchymal or hematopoietic cells were key drivers of IRI, we generated chimeric mice with whole body irradiation and infusion of syngeneic donor bone marrow. Following 8 weeks of engraftment, bilateral renal IRI was performed with analysis at 24 h reperfusion. Results Homozygote and heterozygote Gasdermin-DI105N mice were protected from renal IRI in a gene dose-dependent manner when compared to wild-type, with lower mean serum creatinine (15.7, 48.1 and 85.5µmol/L respectively, p<0.001), less histological tubular injury and cell death (1.8, 3.6 and 5.1 TUNEL+ cells/hpf, p<0.01) and significantly decreased expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, RANTES). Homozygote GasderminDI105N chimeric mice (reconstituted with wild-type donor bone marrow) were more susceptible to IRI, and serum creatinine was similar to that of wild-type chimeric control mice, indicating that hematopoietic cells rather than parenchymal cells, are likely predominant drivers of injury. Similarly, adoptive transfer of CpG-activated CD11c+ dendritic cells into homozygous Gasdermin-DI105N mice augmented renal injury compared to GpC-treated cells. Conclusion GasderminDI105N mice were protected from IRI and demonstrates the importance of the pyroptosis pathway on acute kidney injury. Manipulation of GasderminD is potentially an attractive target to mitigate inflammation and cellular death following injury.

Biology ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 48 ◽  
Author(s):  
Theodoros Eleftheriadis ◽  
Georgios Pissas ◽  
Georgia Antoniadi ◽  
Vassilios Liakopoulos ◽  
Ioannis Stefanidis

Ischemia–reperfusion injury contributes to the pathogenesis of many diseases, with acute kidney injury included. Hibernating mammals survive prolonged bouts of deep torpor with a dramatic drop in blood pressure, heart, and breathing rates, interspersed with short periods of arousal and, consequently, ischemia–reperfusion injury. Clarifying the differences under warm anoxia or reoxygenation between human cells and cells from a native hibernator may reveal interventions for rendering human cells resistant to ischemia–reperfusion injury. Human and hamster renal proximal tubular epithelial cells (RPTECs) were cultured under warm anoxia or reoxygenation. Mouse RPTECs were used as a phylogenetic control for hamster cells. Cell death was assessed by both cell imaging and lactate dehydrogenase (LDH) release assay, apoptosis by cleaved caspase-3, autophagy by microtubule-associated protein 1-light chain 3 B II (LC3B-II) to LC3B-I ratio, necroptosis by phosphorylated mixed-lineage kinase domain-like pseudokinase, reactive oxygen species (ROS) fluorometrically, and lipid peroxidation, the end-point of ferroptosis, by malondialdehyde. Human cells died after short periods of warm anoxia or reoxygenation, whereas hamster cells were extremely resistant. In human cells, apoptosis contributed to cell death under both anoxia and reoxygenation. Although under reoxygenation, ROS increased in both human and hamster RPTECs, lipid peroxidation-induced cell death was detected only in human cells. Autophagy was observed only in human cells under both conditions. Necroptosis was not detected in any of the evaluated cells. Clarifying the ways that are responsible for hamster RPTECs escaping from apoptosis and lipid peroxidation-induced cell death may reveal interventions for preventing ischemia–reperfusion-induced acute kidney injury in humans.


2020 ◽  
Vol 217 (11) ◽  
Author(s):  
Miyako Tanaka ◽  
Marie Saka-Tanaka ◽  
Kozue Ochi ◽  
Kumiko Fujieda ◽  
Yuki Sugiura ◽  
...  

Accumulating evidence indicates that cell death triggers sterile inflammation and that impaired clearance of dead cells causes nonresolving inflammation; however, the underlying mechanisms are still unclear. Here, we show that macrophage-inducible C-type lectin (Mincle) senses renal tubular cell death to induce sustained inflammation after acute kidney injury in mice. Mincle-deficient mice were protected against tissue damage and subsequent atrophy of the kidney after ischemia–reperfusion injury. Using lipophilic extract from the injured kidney, we identified β-glucosylceramide as an endogenous Mincle ligand. Notably, free cholesterol markedly enhanced the agonistic effect of β-glucosylceramide on Mincle. Moreover, β-glucosylceramide and free cholesterol accumulated in dead renal tubules in proximity to Mincle-expressing macrophages, where Mincle was supposed to inhibit clearance of dead cells and increase proinflammatory cytokine production. This study demonstrates that β-glucosylceramide in combination with free cholesterol acts on Mincle as an endogenous ligand to induce cell death–triggered, sustained inflammation after acute kidney injury.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1729 ◽  
Author(s):  
Rui Cui ◽  
Jia Xu ◽  
Xiao Chen ◽  
Wenliang Zhu

MicroRNAs (miRNAs) are negative regulators of gene expression and protein abundance. Current evidence shows an association of miRNAs with acute kidney injury (AKI) leading to substantially increased morbidity and mortality. Here, we investigated whether miRNAs are inductive regulators responsible for the pathological development of AKI. Microarray analysis was used to detect temporal changes in global miRNA expression within 48 h after AKI in mice. Results indicated that global miRNA expression gradually increased over 24 h from ischemia reperfusion injury after 24 h, and then decreased from 24 h to 48 h. A similar trend was observed for the index of tubulointerstitial injury and the level of serum creatinine, and there was a significant correlation between the level of total miRNA expression and the level of serum creatinine (p< 0.05). This expression-phenotype correlation was validated by quantitative reverse transcription PCR on individual miRNAs, including miR-18a, -134, -182, -210 and -214. Increased global miRNA expression may lead to widespread translational repression and reduced cellular activity. Furthermore, significant inflammatory cytokine release and peritubular capillary loss were observed, suggesting that the initiation of systematic destruction programs was due to AKI. Our findings provide new understanding of the dominant role of miRNAs in promoting the pathological development of AKI.


2006 ◽  
Vol 290 (5) ◽  
pp. F1187-F1193 ◽  
Author(s):  
Roshni R. Molls ◽  
Vladimir Savransky ◽  
Manchang Liu ◽  
Shannon Bevans ◽  
Tulsi Mehta ◽  
...  

Renal ischemia-reperfusion injury (IRI) is the leading cause of acute kidney injury [AKI; acute renal failure (ARF)] in native kidneys and delayed graft function in deceased donor kidney transplants. Serum creatinine rises late after renal IRI, which results in delayed diagnosis. There is an important need to identify novel biomarkers for early diagnosis and prognosis in renal IRI. Given the inflammatory pathophysiology of renal IRI, we used a protein array to measure 18 cytokines and chemokines in a mouse model of renal IRI at 3, 24, and 72 h postischemia. A rise in renal keratinocyte-derived chemokine (KC) was the earliest and most consistent compared with other molecules, with 3-h postischemia values being 9- and 13-fold greater than sham and normal animals, respectively. Histological changes were evident within 1 h of IRI but serum creatinine only increased 24 h after IRI. With the use of an ELISA, KC levels in serum and urine were highest 3 h postischemia, well before a significant rise in serum creatinine. The human analog of KC, Gro-α, was markedly elevated in urine from humans who received deceased donor kidney transplants that required dialysis, compared with deceased donor kidney recipients with good graft function and live donor recipients with minimal ischemia. Measurement of KC and its human analog, Gro-α, could serve as a useful new biomarker for ischemic ARF.


2017 ◽  
Vol 313 (3) ◽  
pp. F699-F705 ◽  
Author(s):  
LaTawnya Pleasant ◽  
Qing Ma ◽  
Mahima Devarajan ◽  
Priyanka Parameswaran ◽  
Keri Drake ◽  
...  

The early events that signal renal dysfunction in presymptomatic heart failure are unclear. We tested the hypothesis that functional and mechanistic changes occur in the kidney that precede the development of symptomatic heart failure. We employed a transgenic mouse model with cardiomyocyte-specific overexpression of mutant α-B-crystallin that develops slowly progressive cardiomyopathy. Presymptomatic transgenic mice displayed an increase in serum creatinine (1.17 ± 0.34 vs. wild type 0.65 ± 0.16 mg/dl, P < 0.05) and in urinary neutrophil gelatinase-associated lipocalin (NGAL; 278.92 ± 176.24 vs. wild type 49.11 ± 22.79 ng/ml, P < 0.05) but no renal fibrosis. Presymptomatic transgenic mouse kidneys exhibited a twofold upregulation of the Ren1 gene, marked overexpression of renin protein in the tubules, and a worsened response to ischemia-reperfusion injury based on serum creatinine (2.77 ± 0.66 in transgenic mice vs. 2.01 ± 0.58 mg/dl in wild type, P < 0.05), urine NGAL (9,198.79 ± 3,799.52 in transgenic mice vs. 3,252.94 ± 2,420.36 ng/ml in wild type, P < 0.05), tubule dilation score (3.4 ± 0.5 in transgenic mice vs. 2.6 ± 0.5 in wild type, P < 0.05), tubule cast score (3.2 ± 0.4 in transgenic mice vs. 2.5 ± 0.5 in wild type, P < 0.05), and TdT-mediated dUTP nick-end labeling (TUNEL)-positive nuclei (10.1 ± 2.1 in the transgenic group vs. 5.7 ± 1.6 per 100 cells counted in wild type, P < 0.01). Our findings indicate functional renal impairment, urinary biomarker elevations, and induction of renin gene and protein expression in the kidney that occur in early presymptomatic heart failure, which increase the susceptibility to subsequent acute kidney injury.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Line Stattau Bisgaard ◽  
Pernille M Christensen ◽  
Ernst-Martin Füchtbauer ◽  
Lars Bo Nielsen ◽  
Christina Christoffersen

Abstract Background and Aims Acute kidney injury is a severe disease with detrimental outcomes. The underlying ethiology is still elusive and besides dialysis, treatment options are poor. Apolipoprotein M (apoM) is mainly expressed in liver and in proximal tubular epithelial cells in the kidney. In plasma, apoM associates with HDL particles via a retained signal peptide. ApoM is a carrier of sphingosine-1-phosphate (S1P), a small bioactive lipid involved in e.g. angiogenesis, lymphocyte trafficking, and vascular barrier function. Recently, it was shown that apoM/S1P protects against development of liver and lung fibrosis. In urine, apoM is normally undetectable in both wild type mice and healthy humans. However, lack of megalin receptors in proximal tubuli induces loss of apoM into the urine. The biological function of kidney-derived apoM is unknown, but it has been hypothesized that apoM might be secreted to the pre-urine to sequester molecules, such as S1P, from secretion. The aim of this study was to unravel the role of apoM in kidney biology and in acute kidney injury. Method A novel kidney specific human apoM transgenic mouse (RPTEC-hapoMTG), was generated by expressing human apoM under the control of the proximal tubular epithelial cell specific Sglt2 promoter. The effect of kidney specific apoM overexpression on acute kidney injury was accessed by inducing either cisplatin or ischemia/reperfusion injury. Further, a stable cell line of HK-2 cells overexpressing hapoM (HK-2hapoM-TG) was generated and the cells were cultured on transwells to assess the secretion of apoM to respectively the apical and basolateral site. Results hapoM was present in plasma from RPTEC-hapoMTG mice (mean 0.18 μM), indicating that kidney-derived apoM can be secreted to plasma. When assessing the secretion of hapoM from proximal tubular epithelial cells in vitro, studies support that apoM can be secreted to both the apical (urine) and basolateral (blood) compartment. No differences in kidney injury markers (plasma urea and creatinine) between RPTEC-hapoMTG and wild type (WT) mice subjected to cisplatin injections, or in kidney injury score determined by histological evaluation was found. Similar, we could not detect any histological difference between RPTEC-hapoMTG and WT mice after ischemia/reperfusion injury, and overexpression of hapoM did not affect kidney gene expression of inflammatory markers (i.e. IL6, MCP-1) compared to WT mice. Conclusion Our study suggests that apoM can be secreted to both the apical and basolateral compartment, supporting a role for apoM in sequestering molecules from secretion in urine. Transgenic overexpression of apoM in proximal tubular epithelial cells of mice did not protect against acute kidney injury.


2020 ◽  
Vol 22 (1) ◽  
pp. 271
Author(s):  
Khai Gene Leong ◽  
Elyce Ozols ◽  
John Kanellis ◽  
Shawn S. Badal ◽  
John T. Liles ◽  
...  

Cyclophilins have important homeostatic roles, but following tissue injury, cyclophilin A (CypA) can promote leukocyte recruitment and inflammation, while CypD can facilitate mitochondrial-dependent cell death. This study investigated the therapeutic potential of a selective cyclophilin inhibitor (GS-642362), which does not block calcineurin function, in mouse models of tubular cell necrosis and renal fibrosis. Mice underwent bilateral renal ischemia/reperfusion injury (IRI) and were killed 24 h later: treatment with 10 or 30 mg/kg/BID GS-642362 (or vehicle) began 1 h before surgery. In the second model, mice underwent unilateral ureteric obstruction (UUO) surgery and were killed 7 days later; treatment with 10 or 30 mg/kg/BID GS-642362 (or vehicle) began 1 h before surgery. GS-642362 treatment gave a profound and dose-dependent protection from acute renal failure in the IRI model. This protection was associated with reduced tubular cell death, including a dramatic reduction in neutrophil infiltration. In the UUO model, GS-642362 treatment significantly reduced tubular cell death, macrophage infiltration, and renal fibrosis. This protective effect was independent of the upregulation of IL-2 and activation of the stress-activated protein kinases (p38 and JNK). In conclusion, GS-642362 was effective in suppressing both acute kidney injury and renal fibrosis. These findings support further investigation of cyclophilin blockade in other types of acute and chronic kidney disease.


2017 ◽  
Vol 37 (22) ◽  
Author(s):  
Lei Yu ◽  
Takashi Moriguchi ◽  
Hiroshi Kaneko ◽  
Makiko Hayashi ◽  
Atsushi Hasegawa ◽  
...  

ABSTRACT Acute kidney injury (AKI) is a leading cause of chronic kidney disease. Proximal tubules are considered to be the primary origin of pathogenic inflammatory cytokines in AKI. However, it remains unclear whether other cell types, including collecting duct (CD) cells, participate in inflammatory processes. The transcription factor GATA2 is specifically expressed in CD cells and maintains their cellular identity. To explore the pathophysiological function of GATA2 in AKI, we generated renal tubular cell-specific Gata2 deletion (G2CKO) mice and examined their susceptibility to ischemia reperfusion injury (IRI). Notably, G2CKO mice exhibited less severe kidney damage, with reduced granulomacrophagic infiltration upon IRI. Transcriptome analysis revealed that a series of inflammatory cytokine genes were downregulated in GATA2-deficient CD cells, suggesting that GATA2 induces inflammatory cytokine expression in diseased kidney CD cells. Through high-throughput chemical library screening, we identified a potent GATA inhibitor. The chemical reduces cytokine production in CD cells and protects the mouse kidney from IRI. These results revealed a novel pathological mechanism of renal IRI, namely, that CD cells produce inflammatory cytokines and promote IRI progression. In injured kidney CD cells, GATA2 exerts a proinflammatory function by upregulating inflammatory cytokine gene expression. GATA2 can therefore be considered a therapeutic target for AKI.


Author(s):  
Yunqing Chen ◽  
Hongyan Fan ◽  
Shijun Wang ◽  
Guanmin Tang ◽  
Changlin Zhai ◽  
...  

Ischemia-reperfusion (I/R) injury is a major cause of cell death and organ damage in numerous pathologies, including myocardial infarction, stroke, and acute kidney injury. Current treatment methods for I/R injury are limited. Ferroptosis, which is a newly uncovered type of regulated cell death characterized by iron overload and lipid peroxidation accumulation, has been investigated in various diseases. There is increasing evidence of a close association between ferroptosis and I/R injury, with ferroptosis frequently identified as a new therapeutic target for the management of I/R injury. This review summarizes the current status of ferroptosis and discusses its relationship with I/R injury, as well as potential treatment strategies targeting it.


2008 ◽  
Vol 295 (5) ◽  
pp. H1825-H1833 ◽  
Author(s):  
Tyler H. Rork ◽  
Kori L. Wallace ◽  
Dylan P. Kennedy ◽  
Melissa A. Marshall ◽  
Amy R. Lankford ◽  
...  

Mast cells are found in the heart and contribute to reperfusion injury following myocardial ischemia. Since the activation of A2Aadenosine receptors (A2AARs) inhibits reperfusion injury, we hypothesized that ATL146e (a selective A2AAR agonist) might protect hearts in part by reducing cardiac mast cell degranulation. Hearts were isolated from five groups of congenic mice: A2AAR+/+mice, A2AAR−/−mice, mast cell-deficient (KitW-sh/W-sh) mice, and chimeric mice prepared by transplanting bone marrow from A2AAR−/−or A2AAR+/+mice to radiation-ablated A2AAR+/+mice. Six weeks after bone marrow transplantation, cardiac mast cells were repopulated with >90% donor cells. In isolated, perfused hearts subjected to ischemia-reperfusion injury, ATL146e or CGS-21680 (100 nmol/l) decreased infarct size (IS; percent area at risk) from 38 ± 2% to 24 ± 2% and 22 ± 2% in ATL146e- and CGS-21680-treated hearts, respectively ( P < 0.05) and significantly reduced mast cell degranulation, measured as tryptase release into reperfusion buffer. These changes were absent in A2AAR−/−hearts and in hearts from chimeric mice with A2AAR−/−bone marrow. Vehicle-treated KitW-sh/W-shmice had lower IS (11 ± 3%) than WT mice, and ATL146e had no significant protective effect (16 ± 3%). These data suggest that in ex vivo, buffer-perfused hearts, mast cell degranulation contributes to ischemia-reperfusion injury. In addition, our data suggest that A2AAR activation is cardioprotective in the isolated heart, at least in part by attenuating resident mast cell degranulation.


Sign in / Sign up

Export Citation Format

Share Document